
API Testing: Environments, Tools, and
Future Proofing Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
API Testing: Environments, Tools,
and Future Proofing
6 Environments & Tools
12 Future Proofing

References
15 Aknowledgments
15 Purpose of this Document
16 Trademarks
16 Works Sited

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information

KEYWORDS

cURL, environment, Powershell, Postman, ReadyAPI, rapid
growth, change management

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR API TESTING: ENVIRONMENTS, TOOLS,
AND FUTURE PROOFING
API Test Tools
Explain examples of off the shelf and open source tools for API testing
Explain examples of in-build API test tools
Summarise gRPC and graphQL test tools

Test Environments
Summarize the considerations regarding tool selection for performance testing APIs

Performance Test Tools and Support
Summarize the considerations regarding tool selection for performance testing APIs
Explain the advantages and disadvantages of cloud-based performance tools
Summarize the usage of jMeter in API testing

Test Automation
Explain why test automation is used in API testing
Explain the environment considerations in API test automation
Summarize the skills needed for the API tester when developing test automation

Expect Rapid Growth
Explain how the rapid development cycles affect testing

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Build for Change
Summarize the considerations for building a test approach for change
Explain why maintainability of tests is necessary

Plan for the Future
Explain how API testing can be made more efficient

Anticipating the Future
Explain the factors for a tester to consider when planning for the future of API testing

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Environments and Tools
Tools
There are both off-the-shelf licensed API test tools
as well as a wealth of open source or freeware API
test tools. The tester will need to understand the
license requirements of the organization, licensing
budgetary restrictions, licensing requirements (e.g.,
node locked), and the in-team comfort/training
with a particular tool.

Most API tools are lightweight requiring small
amounts of hard drive space and RAM but do
require local machine installation. While some
tools are only installable on Microsoft Windows
machines, many others can be installed on
Microsoft Windows, iOS, or Linux.

It’s advisable to conduct a proof-of-concept to
evaluate a selected set of tools to ensure they
will work in the test environment and with the
software under test. Building a pro vs con list of
the different tools is helpful to select the best tool
and to justify any licensing costs. While evaluating
the tool itself, also evaluate the vendor to
understand what support they will offer, available
documentation, reliability, etc.

OFF THE SHELF LICENSED TOOLS
Smartbear’s ReadyAPI is an off the shelf licensed
API testing tool that performs API testing as well
as performance testing. The tool is installable
on Microsoft Windows®, iOS, or Linux. Running
tests on a remote machine (i.e., a VM in the cloud)
requires a ‘runner’ TestExecute be running on
the remote machine. The tool does have Azure
DevOps integration.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

OPEN SOURCE OR FREEWARE TEST
TOOLS
SoapUI is the open source version of Smartbear’s
ReadyAPI. SoapUI has a performance testing
capability that allows the tester to set up multiple
virtual users easily and with no cost. It allows
significant configuration capabilities to start the
transactions and to gather the timing metrics. It
does not, however, have a capability to read data
from a data file which limits the types of tests that
can be run.

SoapUI is not as widely used as Postman.
Postman has emerged in the industry as the ‘go-
to’ tool for API testing. Postman has some test
integration with Azure DevOps but requires some
set-up. (Jan Kratochvil, 2023)

IN-BUILD OPERATING SYSTEM TEST
TOOLS
Operating systems have ‘in-build’ (i.e., tools that
install with the OS install), tools that have the
ability to test APIs. This approach is not often used

as using the tool requires specific tool knowledge
and scripting skills.

PowerShell can be used to test REST APIs or
graphQL queries on Windows. However, there is
not PowerShell support for gRPC. (James Newton-
King, 2022)

cURL (Client URL) is a well-known tool that can be
used to test APIs. cURL is installed by default in
iOS and Linux. cURL can be installed in Windows.
It works through a command line interface and can
be used to send API requests. Requests normally
consist of the endpoint, the HTTP method (GET,
POST, PUT, DELETE), the header and the body.

GRPC TEST TOOLS
Like REST API tools, there are freeware and
licensed tools that can be used to test gRPC
services.

ReadyAPI supports gRPC testing. There are also
several freeware alternatives to licensed gRPC test
tools. The most popular freeware tool to test gRPC
is Postman. In addition to Postman, gRPCurl is
an open-source command-line tool that provides

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

interaction with gRPC services. gRPCui can be
used to build on top of gRPCurl and adds an open-
source interactive web UI for gRPC.

(Newton-King, 2022)

GRAPHQL TEST TOOLS
There are several graphQL tools available
including the following:

• GraphiQL: GraphiQL is an in-browser IDE for
exploring GraphQL APIs.

• GraphQL Voyager: GraphQL Voyager is a tool
that allows the tester to represent any GraphQL
API as an interactive graph.

• Hygraph: Hygraph is a tool that allows the
tester to build a GraphQL Content API in
minutes.

• GraphQL Faker: GraphQL Faker is a tool that
allows you to mock or extend your GraphQL API
with faked data. (Doerrfeld, 2017)

Environments

ENVIRONMENT CONSIDERATIONS
When testing API(s) the tester will need to
consider the environments. Different API versions
can be deployed to different environments.
Conversely, a version of an API can be deployed
to all environments simultaneously. Each build
and deployment approach has its own test
considerations. The tester will need to have clear
communication from stakeholders (such as the
release manager) to keep testing in sync with the
build deployments.

Data Handling

Testing for APIs must consider receiving data and
sending data. Data must be handled with the
appropriate level of security and reliability. The
tester may need to work with other stakeholders
such as data analysts or data scientists to ensure
the test data is representative of real production
data – without the need for using sensitive
or personal information. Data may have an

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

underlying tight coupling with the environment
under test. The tester may need to consider data
clean-up or resetting the data so other tests or
processes are not disrupted.

Performance Test Tools and
Support

OFF-THE-SHELF LICENSED
PERFORMANCE TEST TOOLS
There are off-the-shelf licensed API test tools that
include some performance test functionality. There
are also licensed tools that focus on performance
testing that cater to API testing. Additionally,
there are freeware tools that can be used for
performance testing.

When selecting an API testing tool, its ability
to perform some degree of performance
testing needs to be assessed. Before selecting
a performance test tool, the tester will need
to understand the license requirements of the
organization, licensing budgetary restrictions,

licensing constraints (such as a finite number of
virtual users), and the team’s comfort/training with
tool use.

The tester will also need to be aware of restrictions
for each machine that may generate traffic used in
the performance testing. These restrictions might
include the OS supported for tool installation, the
license requirements for each machine, and the
monetary cost of machine use (such as a VM in the
cloud). For example, if the performance scenario
requires 5 different (virtual) machines generating
traffic for an API, each of the 5 machines may
need a license and may incur cost while the VM is
running.

CLOUD-BASED PERFORMANCE
TESTING TOOLS
There are performance test frameworks available
for cloud service providers such as BlazeMeter®
or Azure®. The cloud providers offer a means of
traffic generation and report generation without
the overhead of VM or container management.
Cloud-Based providers do not tend to offer good
ROI (return on investment) for small performance

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

test projects. For large performance testing
requirements, the tester will need to keep these
service options in mind.

OPEN SOURCE AND FREEWARE TEST
TOOLS
Though there are open source and freeware
tools, the industry ‘go-to’ tool is jMeter™. jMeter
has an extensive user base and instruction base
(using YouTube for example). jMeter can be
used for simple and complex performance test
scenarios. It is suggested that if a tester has not
used a performance test tool before, that the tester
study and use jMeter in conjunction with other
learning materials to build a performance test
understanding.

Test Automation
API automated testing is strongly encouraged
as the nature of APIs lends itself to the use of
automated testing code to test the API code. API
tests are often repeatable and tend to require less
overhead to add and maintain tests (versus WebUI
tests, for example). Tools such as Postman feature
the ability to generate code from API calls (called a
collection in Postman). AI tools such as ChatGPT
can generate API test code scaffolding in the
preferred language in seconds.

TEST AUTOMATION TOOL SUPPORT
The test automation expectation is that tests
can be automated and executed in a repeatable,
durable, reliable, and reportable fashion. The
automated testing tools will need to accommodate
execution via (test) build pipelines that might
be run several times a day. A proof-of-concept
should be used to determine the automation’s fit
for use.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Test Automation Test Environment(s)
Considerations

When designing a test automation framework,
there are several considerations that should be
weighed:

• The test automation may be required to execute
in multiple test environments in parallel.

• Test data dependencies (i.e. different data
needed in different environments) is a
consideration when designing and developing
the test automation. Test configuration (via a
configuration file consumed by the test) may be
a method of handling different environments

• If there are multiple test automation execution
environments, segregation or aggregation
of the results may be helpful to determine in
which environment(s) a failure occurred. For
example, if a test automation run were to occur
in environment A and B, a separate report, or
a way to differentiate the test results, will be
required to understand if test failures occurred
in A, B, or both A and B.

SKILLS NEEDED
As with any test automation project, programming
and scripting skills are needed to develop
high quality, maintainable test scripts. API
test scripts might be leveraged to be used for
API performance testing; hence, any previous
performance test experience will be an asset when
developing the test scripts. A tester will need to
understand the tool or code enough to implement
configurations that result in both futureproofing
as well as allowing the scripts to run in different
environments. AI has become a way to expedite
test script creation; however, the tester will need
the skill to know when and where an AI gives
incorrect scripting code so that the scripts can be
fixed for use. If the tester is new to API test script
development, it is advised that a peer review is
conducted on the scripts so the tester’s skills can
be refined.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Future Proofing

Expect Rapid Growth
APIs can be developed more and more quickly
given the current code scaffolding and use of AI.
The tester will have the expectation to develop
API tests in sync with development so as not to be
the bottleneck for product and feature releases.
Therefore, the tester will need to understand,
plan for, and adapt to the rapid test expectations
placed on them.

Build for Change
As profit margins decrease due to competition
in the market, pressure will be put on the
development and testing teams to produce high
quality, maintainable products quickly. Testing will
need to engage early with development to plan the
testing, procure the tools and environments, and
upskill as needed.

ARCHITECT THE TESTING
It will not be enough for the developers to
plan for change. The test approach must
also be architected for change. Some of the
considerations for this flexible framework include:

• Implementing or utilizing test environments that
can be quickly assembled and disassembled

• Utilizing the most appropriate tool for the task
by using different tools for different tasks if it is
pragmatic to do so

• Where possible, conform to the tool and code
language governance of the product team

• Implementing maintainable, repeatable test
automation steering clear of data dependencies
where possible

• Designing the performance testing approach at
the beginning of a project

• Conducting performance testing throughout the
software development lifecycle

• Conducting security testing throughout the
software development lifecycle

• Building a robust test result reporting structure
for auditability and coverage metrics

• Accommodating a risk-based testing approach
• Monitoring the ROI

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Tools must be selected for flexibility and the ability
to adapt to the changing market. Tool vendors
must be highly responsive to the market changes.
Relying on past reputation will not be sufficient in
a market that is moving quickly and has many tool
options.

Re-usability is a goal. As APIs tend to underpin a
product’s back-end, initial investment in re-usable
test code provides a better ROI.

ENABLE EFFICIENT MAINTENANCE
Efficient maintainability is a requirement. The
test environments, tools, and test scripts must
be able to be maintained or replaced. Test tools
and scripts might be developed in the short term,
but the scripts might be used well into the future.
Discussions with the product/project manager on
the projected changes are advised to make an
informed decision on how to build the tool set or
test scripts for efficient maintenance.

SELECT TOOLS FOR FLEXIBILITY
Tools will need to be selected to attempt future
proofing and flexibility. As the API endpoints
evolve, the test tools will need to accommodate the
additional testing requirements while keeping the
current test coverage in-place. The tool may need
to provide a pathway to automated testing. For
example, Postman offers the ability to create test
code from an existing collection in a selection of
languages. Tool characteristics such as licensing
costs and support availability must be monitored
to ensure efficient long-term use.

Plan for the Future
Agile and iterative lifecycles already dominate
the industry, but new leaner methodologies may
become popular. The tester must remember that
any lifecycle model will require some adaptation
and the tester must understand the moment of
involvement and level of involvement that will be
expected in the various models.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Timescales for the development and testing of
applications have never been so short. The market
demand has never been so high. The tester must
expect to work with the developers to ensure the
best possible product is being released within the
given timeframe. In addition, any initial investment
of time and effort to make future test development
more efficient is advised. Using configuration
settings or parameters where possible might
take some time to implement initially but will pay
rewards during the life of the product in terms of
reduced maintenance.

While new lifecycle models may be on the horizon,
there will still be a need for efficient testing. This
means taking a lightweight approach to deliver a
proper ROI. Automated functional testing, security
testing, and performance testing may be required,
and the tools must be appropriate to the needs,
schedules, and budgets. Tools will likely adapt to
fill the market as well.

Anticipating the Future
Though REST, gRPC, and graphQL have been
around for over or nearly a decade (graphQL was
released in 2015), testers need to be ready and
willing to adopt new technologies, investigate
new tools and learn more efficient and leaner
testing methodologies. Testers cannot anticipate
the effect of new technologies such as AI, but
testers can study and adapt to the ever-changing
software testing landscape.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

References
Acknowledgements

This document was produced by a core team from the AT*SQA Foundation Level Working Group – API
Micro-Credentials

Judy McKay (chair).
Johnathan Seal – Author
Earl Burba, Judy McKay, Randy Rice - Reviewers

The core team thanks the review team for their suggestions and input.

AI (such as ChatGPT) was not used to create content for this document.

Purpose of this Document

This syllabus forms the basis for the Association for Software Testing and Quality Assurance (AT*SQA)
Micro-Credential for API Testing. This particular syllabus is focused on the Introduction and the Test
Planning and Design areas.

AT*SQA provides this syllabus as follows:

1. To training providers, to produce courseware and determine appropriate teaching methods.
2. To credential candidates, to prepare for the exam (as part of a training course or independently).
3. To the international software and systems engineering community, to advance the profession of software

and systems testing, and as a basis for books and articles.

The AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission.

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Trademarks

The following registered trademarks and service marks are used in this document:

• Windows , Microsoft, Azure, and Azure DevOps are registered trademarks of the Microsoft Corporation.
• Apple and iOS are registered trademarks of Apple Corporation.
• Postman is a registered trademark of Postman Inc.
• ReadyAPI, TestComplete, SOAPUI, and TestExecute are registered trademarks of SmartBear Software.
• ASTQB is a registered trademark of the American Software Testing Qualifications Board
• ISTQB is a registered trademark of the International Software Testing Qualifications Board.
• ChatGPT is a registered trademark for OpenAI Company.
• Blazemeter is a registered trademark for the Perforce Software Inc.
• JMeter is a trademark of Apache JMeter.

Works Cited
James Newton-King. (2022, 09 22). Compare gRPC services with HTTP APIs. Retrieved from https://learn.
microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-8.0

James Newton-King. (2022, 09 20). Test gRPC services with Postman or gRPCurl in ASP.NET Core. Retrieved
from learn.microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/test-tools?view=aspnetcore-7.0

Ana. (2023, 1 19). What are API Headers. Retrieved from mixedanalytics.com: https://mixedanalytics.com/
knowledge-base/api-headers-explained/#:~:text=in%20API%20Connector%3F-,What%20are%20API%20
headers%3F,an%20API%20key%20for%20authentication.

contributors, M. (2022, 9 9). Accept. Retrieved from developer.mozilla.org: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Accept

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Esteban Herrera. (2022, 08 24). GraphQL vs. REST APIs: Why you shouldn’t use GraphQL. Retrieved from
https://blog.logrocket.com/: https://blog.logrocket.com/graphql-vs-rest-api-why-you-shouldnt-use-graphql/

Hitesh Baldaniya . (2021, 07 19). Why and When to Use GraphQL. Retrieved from https://dzone.com: https://
dzone.com/articles/why-and-when-to-use-graphql-1

Jan Kratochvil. (2023, 01 13). A new Postman integration for Azure DevOps users. Retrieved from https://
blog.postman.com/: https://blog.postman.com/postman-integration-for-azure-devops-users/

jwt.io. (n.d.). introduction. Retrieved from jwt.io: https://jwt.io/introduction

Levy, T. (n.d.). A Machine Learning Approach to Log Analytics. Retrieved from logz.io: https://logz.io/blog/
machine-learning-log-analytics/

MDN contributors. (2022, 10 23). Content-Type. Retrieved from developer.mozilla.org/: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

Microsoft. (n.d.). Data contract overview. Retrieved from https://learn.microsoft.com: https://learn.microsoft.
com/en-us/industry/retail/intelligent-recommendations/data-contract

MIcrosoft. (n.d.). JavaScriptSerializer.MaxJsonLength Property. Retrieved from learn.microsoft.com:
https://learn.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer.
maxjsonlength?view=netframework-4.8.1

Mozilla. (n.d.). HTTP response status codes. Retrieved from mozilla.org: https://developer.mozilla.org/en-US/
docs/Web/HTTP/Status

API Testing: Environments, Tools, and Future Proofing Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

mozilla.org. (n.d.). Synchronous and asynchronous requests. Retrieved from mozilla.org: https://developer.
mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests

RedHat. (2020, 5 8). What is a REST API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-is-a-rest-api

Redhat.com. (2022, 6 2). What is an API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-are-application-programming-interfaces

RFC. (n.d.). RFC-2616. Retrieved from RFC-2616: https://www.rfc-editor.org/rfc/rfc2616#section-6

Tamura, K. (2015, 04 21). The log: The lifeblood of your data pipeline. Retrieved from www.oreilly.com:
https://www.oreilly.com/content/the-log-the-lifeblood-of-your-data-pipeline/

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

www.atsqa.org

