
API Testing: Introduction and Testing
Planning & Design Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
API Testing: Introduction and
Testing Planning & Design
6 Introduction
14 Test Planning and Design

References
20 Aknowledgments
20 Purpose of this Document
21 Trademarks
21 Works Cited

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information

KEYWORDS

API application testing, data contract testing, Internet of Things,
microservice architecture, risk analysis, setting scope, test

approach, test coverage, use cases

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR API TESTING:
INTRODUCTION AND TEST PLANNING & DESIGN
What is an API
Understand the definition of a Webservice API
Understand the key terms associated with APIs

Expectations from API Testers
Understand the expectations on an API tester

Challenges for Testers
Understand API testing challenges
Explore some possible solutions to the challenges an API tester may face

Requirements for Testing
Understand the Requirements for API testing

Identify Functions and Attributes
To understand some of the nuanced parts of API testing – functions and attributes

Identify and Assess Risks
To understand how to identify and assess API quality risks

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Determine Coverage Goals
Consider the coverage goals of API testing
Understand the coverage goals of API testing

Determine a Test Approach
Consider and understand the factors that go into determining the API test approach

Identify Test Conditions and Set Scope
Consider and understand factors that go into identification of test conditions
Setting test scope

Regression Testing
Discuss point of consideration while doing regression testing

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Introduction
What is API?
Redhat.com defines API as “API stands for
application programming interface, which is a
set of definitions and protocols for building and
integrating application software.” (Redhat.com,
2022)

In simple terms, API interaction can be looked at
much as a game of catch. A sender throws the
ball (a request message) to a receiver (an API
service). The receiver catches the ball, does some
processing, and sends the processed message
back to the sender (who is now the new receiver).

To carry this analogy to today’s IT architectures,
there are multiple people sending balls to possibly
many receivers, with any one receiver possibly
passing the ball to several other receivers before
throwing the processed ball back to the original
sender. When there is a complex architecture

(a lot of balls in the air going what seems like
everywhere,) it is best to break the architecture
down into individual requests and responses (one
ball at a time).

In today’s applications such as Internet of Things
(IoT) and machine learning, there may not be
a graphical component to the application; the
application can simply consist of data gathering
and analysis with a graphical component being
applied by a different application. In other words,
the API endpoints under test might not be seen by
an end user until later data analysis is performed
– meaning defects can have consequences
undetected for some time.

The purpose of this syllabus is to focus on testing
API endpoints using different architectures. In
simple terms, this syllabus focuses on testing
how a process, or service, interfaces with another
process or service.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

There are three architectures which will be
discussed in AT*SQA API Micro-Credential 2 with
regards to software testing:

• REST(ful) API

• gRPC

• GraphQL

It will focus predominantly on REST APIs due to
REST API’s dominance in the market.

The ability to test an API has become a critical
tool in the tester’s toolbox. API testing is also a
valuable skill for security and performance testing.
In addition, with emerging Artificial Intelligence (AI)
technology, APIs and the testing of APIs will only
become more important. For example, to use AI
(such as ChatGPT®) in a program, there must be a
way to connect to it (via an API).

Expectations of an API Tester
Microservices and distributed systems have
become the foundation for many modern business
applications and processes. These applications
and services use different API architectures to
perform the actions that have become critical to
daily living. Hence, the services providing ‘service
to service’ or ‘service to user’ APIs have an
expectation to function with near 100% uptime.

A defect impacting an API can have a direct
impact to life (i.e., a pharmacy or medical
application) or financial implications (i.e.,
ecommerce search engine). APIs are expected to
be available, are expected to handle peak traffic,
and are expected to be resilient to a security
attack. Organizations can lose customers if a
critical API is not fast enough or is not functionally
correct. An insecure API can lead to data breaches
– exposing customers or company data to negative
impacts. As a result, the tester is expected to be
knowledgeable about the purpose and use of the
API endpoint(s), the traffic the API endpoint(s) are
expected to handle, the expected API exposure
(internal vs. public), and awareness of API security
practices and procedures.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Challenges for Testers
API testing comes with its own unique challenges.
It is important that a tester keep in mind the
different challenges that may confront them while
designing, developing, and executing API tests.
Keeping these in mind and communicating the
challenges early in the API lifecycle can serve to
mitigate or even remove them.

LACK OF API STANDARDIZATION
Non-standardization for API naming, paths,
and call structure is a big challenge to testing. A
structural approach between API endpoints could
be different between organizations or even groups
within an organization. The lack of consistency
can be confusing to both the consumer of the API
endpoints and the tester. A quality assessment
should include an assessment of standardization
between API endpoints and products across an
organization.

NO GRAPHICAL COMPONENT (NO GUI)
The purpose of APIs is to communicate messages
between services; hence, there is not a graphical
user interface (GUI) for API endpoints. This may
be unfamiliar to testers who are accustomed to
testing via a GUI. The lack of a user interface
translates into a testing landscape that is free
of clicks, screen sizes, browser compatibility,
etc. Instead, the test concentrates more on
communication protocols, data structure, error
handling, performance, and security.

PROLIFERATION OF TOOLS
There is a large selection of tools available for
API testing. There are in-OS command line tools
such as cURL for Linux and Apple® or PowerShell
commands for Microsoft Windows®. There are
freeware graphical tools such as Postman®.
In addition, there are per license tools such as
ReadyAPI®. A tester should create a pro vs. con list
comparing the tools’ abilities to the requirements
and budget of the project before selecting a tool.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

UNKNOWN OWNERSHIP AND
UNKNOWN REQUIREMENTS
APIs can be developed as a ‘let’s see’ approach
from development – expecting the API endpoints
to evolve as the requirements become more refined
or defined. This approach leads to unknown
ownership and/or unknown requirements. In
addition, this approach often leads to code churn
and an increased risk of quality deterioration over
time. It is important for a tester to identify the
ownership, audience, and requirements of each
endpoint when designing and developing test
cases.

LACK OF MANAGEMENT AND CONTROL
REST API testing has its own management and
control obstacles. These can be broken into three
areas, these are process dependencies, data
dependencies, and versioning.

• An API endpoint may have a dependency
between one and many other API endpoints
or processes. The dependencies may not be

in the scope or control of the API endpoints
under test; hence, the API under test may have
unpredictable availability or structure (i.e. a
dependent API is undergoing changes). For
example, an API ‘A’ may call a dependency
API ‘B’. ‘A’ has a dependency on ‘B’ but ‘B’
could change without notification to the team
supporting ‘A’.

• Likewise, APIs may require cross team
management of data to allow testing to
execute – something the API under test’s team
may or may not have control over. For example,
an API ‘A’ may call a dependency API ‘B’.
Testing ‘A’ may have a dependency on certain
test data being available from ‘B’ or the tests on
API ‘A’ will fail or will be insufficient.

• An API may have more than one version. When
there is a change made to an API that will
break the current usage of the endpoints, it is
expected that a major version number will be
updated (i.e., v1 to v2 not v1 to v1.1). Different
versions of the API may be active at the same
time which introduces a layer of complexity to
testing and reporting.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

A tester may need to develop a communication
plan/channel so changes to dependencies and
data are communicated. This will allow the tester
to accomplish test repeatability and test strength
(non-fragile tests).

RELEASE FREQUENCY
Today’s architecture emphasizes decoupled
services and releases. This means that a
traditional ‘big bang’ build where the product is
built and deployed as one unit is not guaranteed.
The tests will need to keep in mind that an API, or
even the dependency APIs and services, can be
built multiple times per day. As a result, the tester
will need to design the test approach such that a
test can be run and reported in a traceable and
auditable manner. An API under test may need to
be tested anytime code on which it is dependent is
deployed. For example, if there is a ‘main’ weather
API that gives data for three different cites – each
with its own weather API, each city’s API might be
built and deployed separately. This would imply
that the ‘main’ weather API needs to be retested
every time a city’s API is deployed as well as any
time there is a change to the ‘main’ weather API.

SYNCHRONOUS/ASYNCHRONOUS
APPROACH
As API testing does not have a graphical
component, there is not a progress graphical
component to show processing progress. The
process calling the API may not have a way of
identifying progress. An API may respond in a
synchronous (the process waits for the response)
or asynchronous (the process continues on
with other work and is notified when the API
response is ready) manner depending on how long
processing is expected to take.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

A request that gives the processed results
back quickly is often a synchronous result (the
processing occurs fast enough that the results can
be given in the response). A request that requires
processing that may take some time may use an
asynchronous approach. An asynchronous API
workflow is often broken down into the following
three requests:

1. An acknowledgement that the initial request (or
job) was received

2. A request for the status of the processing
(somewhat equivalent to a progress bar)

3. Retrieval of the results of the processed request
(or job).

Testers will need to keep in mind the API’s
approach (synchronous or asynchronous) when
designing, planning, and executing tests.

PERFORMANCE REQUIREMENTS
API performance can be as important as
functionality. An API that cannot meet the
performance requirements can result in crashes,
lost revenue, or lost functionality.

A tester should keep in mind the audience (the
user of the API), the number of concurrent users
expected (capacity performance testing), the
expected message size to be processed, the time
to process each message both large and small
(volume performance testing), the expected peak
traffic (spike performance testing), the expected
normal traffic (soak performance testing), and
the result of traffic well above the expected peak
(stress performance testing).

Setting performance expectations early with
the product team (between the product owner,
developers, operations, testers, and support
team) sets a foundation for the APIs’ performance
quality. Early performance test planning (e.g.,
when tests will be performed, what environment
will be used, and what users or test data will
need to be created) sets the expectation for the
performance test execution in each release cycle.

TEST DATA REQUIREMENTS
Unlike solutions with a graphical user interface, an
API may need test data to pre-exist to exercise the
API properly. A test data plan for CRUD operations

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

(Create, Read, Update, Delete) may be required
to perform API tests. Some APIs may have a tight
data coupling with multiple dependent APIs to
execute properly. For example, a call to get the
weather forecast for a region may include a call to
a dependency API for each city or sub-region to
give the required data for a region.

Testing may need to include the scenario where
test data is not available (i.e., a dependent service
is not available). Such testing where dependent
data is not available might fall under fault
tolerance, failure recovery, disaster recovery (DR)
testing or negative testing.

Requirements for Testing
Functional testing is required for API testing. The
tester must have the skills necessary for manual
functional testing tasks including requirements
analysis, test design, test implementation, test
execution, and results recording and reporting.
These skills are covered in the ISTQB Foundation
Level syllabus [ISTQB_FL_SYL].

In addition to the standard testing skills
that are always needed, API testing also

requires capabilities for testing specific quality
characteristics such as security, performance,
compatibility, and reliability.

Test automation development, though not required,
is a valuable skill for API testing. Proficiency in the
same language in which the API is developed is
helpful for understanding the API and conducting
static testing. Where test automation development
is implemented with a third-party tool, the
tester must have proficiency in the development,
execution, and reporting of API tests with that tool.

Unlike other types of testing, such as mobile
and GUI testing, API testing often does not need
special equipment such as a particular device.
Different API architectures are designed to have
no dependency on a particular operating system.
However, the tools used for testing (such as
ReadyAPI) may only be installable on particular
operating systems (i.e., Microsoft Windows).

The requirements for fast development
and deployment have pushed the software
development lifecycle toward the iterative models,
including Agile. AI and API code scaffolding have
resulted in faster development. Rapid prototyping

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

is often used to quickly develop, gain feedback
and successfully deploy a new product. A rapid
prototype may end up being the production
released product.

Testers need to employ testing that will not
substantially slow the progress of delivering the
product to market but will help reduce the risk
of a failure. Risk-based testing approaches are
critically important to build quality confidence in
the short testing cycle. The amount of risk and
corresponding testing are correlated to the usage
and criticality of the product. It is important to
evaluate each API endpoint individually for its
risk factors. Once a proper risk analysis has been
conducted, testing can be allocated to mitigate the
risk to achieve the desired level of confidence.

API endpoints tend to be developed incrementally.
An initial, simple version of the application is
developed and deployed. Additional endpoints
or parameters are then added as they become
ready and as the market demands. The intention
of modern development approaches is to allow

the product to be introduced quickly without
compromising quality while additional features are
developed and tested for later deployment.

Sequential lifecycle models (e.g., V-model,
waterfall) can be applied to API development
but are less frequently used due to the need to
get a product to market quickly. Documentation
tends to be minimal. Testing also tends to have
less documentation. Safety-critical applications
still tend to follow sequential models as do other
applications that are under regulatory control.

Versioning is used as a reference of support for
older versus newer versions of the API. When an
API has a breaking change, the version will change
from one major version to another (i.e., v1 to v2).
Old versions of an API may be supported for a
period of time that overlaps with test support of
a newer version. For example, if an API v1 has a
breaking change that results in the release of v2,
testing may need to support v1 for a month (in
addition to supporting v2) to allow users to update
to v2.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Test Planning and Design
Identify Functions and
Attributes
It is important to focus on the functions and
attributes that are within scope for the testing
effort.

API requirements tend to be brief. There may
be a specification, a requirements document,
use cases, or user stories. In general, the tester
should not expect comprehensive requirements
and should instead plan to work at the use case
level or even the child level of a use case - where
usage scenarios are identified. If the use cases are
not available, the tester should seek them out to
understand the expected usage and to focus the
testing accordingly.

Where use cases are unknown or lack definition,
Behaviour-Driven Development (BDD) may be
used to identify the use case (given, when, then) as
well as provide use case test verification. However,
this approach moves the use case documentation
responsibility from the product owner to the tester.

In order to scope the testing, it is important for
the tester to understand the attributes of each
endpoint that are important to the product or
service and to prioritize them appropriately.
Security and performance must be prioritized
along with functionality to identify the risks and
determine the amount and type of testing that will
be needed in each area. The stakeholders must
understand that each attribute desired to be tested
will require an investment in people (with the
appropriate skills), tools and environments.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

Identify and Assess Risks
APIs often form the backbone of an application
or distributed system; yet there is often little time
allocated for implementation and testing. Also,
requirements tend to be brief and informal and
lacking in critical non-functional attributes such as
performance and security. As a result, the tester
will need to keep risks in mind both on the use case
level as well as the overall product level.

If the API or endpoint is new, the tester will need
to assess the functionality of the API or endpoint,
any security threats, boundary conditions, and so
forth. A security test pass and performance test
pass should be scheduled before the new API is
released allowing any issues to be identified and
fixed before release.

If the API or endpoint is not new, a new security
or performance test pass might not automatically
be scheduled before release. Hence, the tester
will need to assess the risk of each change to the
functionality, security, and performance. Changes
that share code with a previous API version might
introduce security vulnerabilities or performance
bottlenecks to the released API endpoint as well as
new endpoints.

It is important for the tester to adapt the risk
identification and assessment process to fit within
the timelines of the project. Heavyweight risk
assessment methods usually are not successful in
this environment and tend to delay the testing.

It may also be useful to consider production
metrics (i.e., how the API or endpoint is currently
used in production,) when defining risk areas. For
example, the following metrics could be used:

• Usage metrics – provides the ratio of endpoint
usage to other metrics or the ratio of optional
parameter usage to non-optional parameter
usage

• Number of application users – indicates how
many people use the application

• Message size – provides the average and peak
API request message and response message

• Response times – provides an average and
peak API response to a request

These metrics can be used to identify high
risk areas that can be addressed by testing or
development. For example, the application user
rates can be used to develop realistic performance
testing goals.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Determine Coverage Goals
It is important to consider all the areas to be
tested and get agreement with the team that the
coverage goals are realistic and will accomplish
the testing goals for the project. The following
areas should be considered, and the desired
coverage determined before starting testing on the
project:

• Requirements/Acceptance Criteria – If there
are requirements or acceptance criteria,
coverage should be used as one of the testing
guidelines. Traceability from the tests back
to the requirements is useful because API
requirements can grow as new features are
added and existing features are updated or
modified. Traceability will help the tester know
which test cases need to be re-executed as a
priority when changes occur.

• Risks – The identified risks must be addressed
by testing. Traceability may be needed between
the test cases and the risk items.

• Endpoints – The capabilities of the software
will be tested but should also be tested in
accordance with the risk and usage associated
with each endpoint. A complete list of
endpoints will help to set the risk levels as well
as to track coverage of each of these items.

• Code – Because of the speed of the
development of APIs, unit testing is very
important and code coverage goals should be
stated before development starts. Automated
unit testing, particularly when employed with
continuous integration and delivery, will help to
improve the quality as the same tests can be
run each time without significant manual time
and effort. Fault metrics and technical debt
measures can be used to track the quality of
the software.

• Error handling – Depending on the API
architecture or resources given to API execution,
error handling can be a common occurrence
with APIs. Hence, the different error conditions
will need to be covered in testing.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

• Geography – The geographic location of
expected use can influence the testing. An API
can be hosted in different geographic regions
resulting in different performance depending
on the physical distance. Depending on the
projected user audience location, performance
based on geographic location will need to be
covered.

• Performance – The baseline expectation for
the API performance will need to be cited.
Depending on the environment under test, the
baseline may need to reflect the hardware
constraints in each environment.

• Security – There is a growing number of
resources available for API security testing.
Depending on the API user audience and risk
of API exploitation, a penetration testing effort
may need to be included in test coverage.

Understanding the coverage requirements
for testing is important for setting the scope
and timelines of the testing effort as well as
to help determine the types of equipment and
environments that will be needed.

Determine a Test Approach
Once the coverage goals are determined, the
proper test approach can be decided. The test
approach must consider the following:

• Environments – The tests must be conducted in
certain environments and those environments
may also have associated conditions (i.e.,
different data dependencies and different
dependency services).

• Industry context – The target industry
can influence the required test approach
(e.g., safety-critical, mission-critical, COTS
(Commercial Off the Shelf), games, business
applications, social network).

• Schedules – The reality of the schedule
(development, test, deployment, release, etc.)
must be considered when determining the test
approach, with the highest priority (highest risk)
tests being conducted first.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

• Scope – The testing scope must be clearly
stated to set the expectations for the coverage
to be achieved and the risk mitigation goals.

• Evaluation – Evaluation of test results tends
to be different for API projects from other
projects given there is not a graphical front-
end component to APIs. A test may need to
be executed from the beginning to the end to
evaluate and triage any failures. Timing issues
may require the test to run several times before
the failure reproduces.

Depending upon the formality and criticality of the
project, the test approach may be documented
in a traditional test plan or may be informally
documented in a brief project document. Either
way, the approach should be documented because
agreement on the approach is critical within the
project.

Identify Test Conditions and
Set Scope
The time needed to create traditional test cases
may not exist in a fast-paced project. In this case,
identifying the test conditions and assigning
risk-based priorities to each test, and conducting
testing to address each of the identified conditions
may be the most efficient method for testing within
the limited timeframe.

API test automation should result in artifacts that
show the scope and test coverage. Manual API
test execution using a tool (i.e., Postman) can
create test artifacts (i.e., the Postman collection).
Where there is little time for requirement and
test documentation, the artifacts can be used to
identify the test conditions and the test scope. Test
artifacts may not include test reports; however,
saving test artifacts (e.g., the automation code,
Postman collection) can be leveraged to show
what testing has occurred and what data was
used in the testing.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Identifying and prioritizing the test conditions sets
the scope for the testing. With limited time, priority/
risk-based testing will ensure the most important
items are tested to some level of coverage.
When time runs out and the coverage is deemed
sufficient, testing is complete.

Regression Testing
Regression testing an API may or may not be
more straightforward than GUI or mobile testing.
Environmental configuration, data dependencies,
and performance will need to be kept in mind
when performing regression testing (i.e., in the
development environment, a test might require
user “Smith”, but user “Smith” does not exist in
the test environment). As stated in the “Release
Frequency” section of this syllabus, there may be
multiple process dependencies that will require
regression testing. It is important for a tester to
capture the API versions, test execution time,
solution build, test environment, and dependency
process versions when reporting on API regression
test results in order to understand failure origins
and failure frequency.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

References
Acknowledgements

This document was produced by a core team from the AT*SQA Foundation Level Working Group – API
Micro-Credentials

Judy McKay (chair).
Johnathan Seal – Author
Earl Burba, Judy McKay, Randy Rice - Reviewers

The core team thanks the review team for their suggestions and input.

AI (such as ChatGPT) was not used to create content for this document.

Purpose of this Document

This syllabus forms the basis for the Association for Software Testing and Quality Assurance (AT*SQA)
Micro-Credential for API Testing. This particular syllabus is focused on the Introduction and the Test
Planning and Design areas.

AT*SQA provides this syllabus as follows:

1. To training providers, to produce courseware and determine appropriate teaching methods.
2. To credential candidates, to prepare for the exam (as part of a training course or independently).
3. To the international software and systems engineering community, to advance the profession of software

and systems testing, and as a basis for books and articles.

The AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission.

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Trademarks

The following registered trademarks and service marks are used in this document:

• Windows , Microsoft, Azure, and Azure DevOps are registered trademarks of the Microsoft Corporation.
• Apple and iOS are registered trademarks of Apple Corporation.
• Postman is a registered trademark of Postman Inc.
• ReadyAPI, TestComplete, SOAPUI, and TestExecute are registered trademarks of SmartBear Software.
• ASTQB is a registered trademark of the American Software Testing Qualifications Board
• ISTQB is a registered trademark of the International Software Testing Qualifications Board.
• ChatGPT is a registered trademark for OpenAI Company.
• Blazemeter is a registered trademark for the Perforce Software Inc.
• JMeter is a trademark of Apache JMeter.

Works Cited
James Newton-King. (2022, 09 22). Compare gRPC services with HTTP APIs. Retrieved from https://learn.
microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-8.0

James Newton-King. (2022, 09 20). Test gRPC services with Postman or gRPCurl in ASP.NET Core. Retrieved
from learn.microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/test-tools?view=aspnetcore-7.0

Ana. (2023, 1 19). What are API Headers. Retrieved from mixedanalytics.com: https://mixedanalytics.com/
knowledge-base/api-headers-explained/#:~:text=in%20API%20Connector%3F-,What%20are%20API%20
headers%3F,an%20API%20key%20for%20authentication.

contributors, M. (2022, 9 9). Accept. Retrieved from developer.mozilla.org: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Accept

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Esteban Herrera. (2022, 08 24). GraphQL vs. REST APIs: Why you shouldn’t use GraphQL. Retrieved from
https://blog.logrocket.com/: https://blog.logrocket.com/graphql-vs-rest-api-why-you-shouldnt-use-graphql/

Hitesh Baldaniya . (2021, 07 19). Why and When to Use GraphQL. Retrieved from https://dzone.com: https://
dzone.com/articles/why-and-when-to-use-graphql-1

Jan Kratochvil. (2023, 01 13). A new Postman integration for Azure DevOps users. Retrieved from https://
blog.postman.com/: https://blog.postman.com/postman-integration-for-azure-devops-users/

jwt.io. (n.d.). introduction. Retrieved from jwt.io: https://jwt.io/introduction

Levy, T. (n.d.). A Machine Learning Approach to Log Analytics. Retrieved from logz.io: https://logz.io/blog/
machine-learning-log-analytics/

MDN contributors. (2022, 10 23). Content-Type. Retrieved from developer.mozilla.org/: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

Microsoft. (n.d.). Data contract overview. Retrieved from https://learn.microsoft.com: https://learn.microsoft.
com/en-us/industry/retail/intelligent-recommendations/data-contract

MIcrosoft. (n.d.). JavaScriptSerializer.MaxJsonLength Property. Retrieved from learn.microsoft.com:
https://learn.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer.
maxjsonlength?view=netframework-4.8.1

Mozilla. (n.d.). HTTP response status codes. Retrieved from mozilla.org: https://developer.mozilla.org/en-US/
docs/Web/HTTP/Status

mozilla.org. (n.d.). Synchronous and asynchronous requests. Retrieved from mozilla.org: https://developer.
mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests

API Testing: Introduction and Testing Planning & Design Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

RedHat. (2020, 5 8). What is a REST API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-is-a-rest-api

Redhat.com. (2022, 6 2). What is an API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-are-application-programming-interfaces

RFC. (n.d.). RFC-2616. Retrieved from RFC-2616: https://www.rfc-editor.org/rfc/rfc2616#section-6

Tamura, K. (2015, 04 21). The log: The lifeblood of your data pipeline. Retrieved from www.oreilly.com:
https://www.oreilly.com/content/the-log-the-lifeblood-of-your-data-pipeline/

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

www.atsqa.org

