
A Case Study: 
14 Lessons in Building 
Quality Software



A Case Study: 
14 Lessons in Building  
Quality Software

It’s true, quality in software development projects 
doesn’t just happen on its own. Quality usually doesn’t 
happen when the project depends on a small group 
of heroes to ride in on their white horses and wave 
their shiny swords to vanquish the problems. Quality 
happens when careful planning is done, when the 
entire project team maintains a quality-conscious 
approach every step, when problems don’t escape 
from the phase in which they were introduced. A 
quality product is a team effort. It’s planned and 
predictable. It’s without heroes, and it’s faster and 
cheaper than a low quality effort. How can this be? 
Let’s look at some sample projects. The first is a 
normal, low quality, late project. We’ll call it project 
“Hurry Up” (HU for short).

“Hurry Up” got a bit of a late start due to the on-going 
maintenance issues of its predecessor project “Just 
Ship It” (JSI). JSI was handled by a Project Manager 
(PM) who felt it was more important to ship on time 
than to ship a quality project. So he did. This PM was 
rewarded for his ability to “pull it together”, “get it out 
the door” and “meet that schedule.” The JSI PM was 
given a bonus for meeting his schedule and is now 
vacationing in Tahiti while the team deals with the 
fallout of the numerous bugs and unhappy customers.

Lesson #1
Don’t reward for shipping on schedule. Anyone can 
ship garbage. Base rewards on quality measures.

The JSI developers worked 80 hour weeks for the 
last month of the project. One heroic fellow was 
recognized for working 120 hours in one week, 
stopping only for brief rests. He heroically repaired 
multiple interfaces between applications. Those 
interfaces had not been properly specified (no design 
documents), no integration testing had been done 
(no time) and the QA team had fought with the issues 
throughout system test.

Lesson #2
Don’t reward heroes for their Herculean effort late in 
the project to fix problems that could have and should 
have been fixed by the same people much earlier in 
the lifecycle.

The entire JSI team is down with the flu now due to 
lack of sleep.

Lesson #3 
If you expect to work your people inordinate hours, 
you might want to consider corporate-sponsored flu 
shots!

HU was supposed to start three weeks ago, but 
the lingering effects of the flu, the nagging JSI 
maintenance problems and general team discord 
have slowed down the start. The analysts who are 
responsible for writing the requirements are in a rush. 
They got started late, the customer can’t make up his 
mind and the PM is pressuring for completion. They 
write what they can in an MS Word document and ask 
for a review. The PM tells development to start coding 
and schedules a “quick” requirements review between 
the analysts and the developers. 

Lesson #4 
Always include QA and other project team members 
in all reviews to get the most well-rounded input 
possible.

The requirements specification is sent out via email 
and questions/responses are requested. Development 
has already started coding – they don’t want any 
changes to be made. No one responds to the email, 
so the requirements are signed off as is.

Lesson #5
It’s easy to ignore documents that are sent in email for 
approval. No response does not equal approval; no 
response equals “I didn’t have time to read it.”

Development is busy coding. They are hitting some 
problems because the interfaces between functions 



aren’t well-defined. This is necessitating recoding and 
substantially slowing down the schedule. When they 
ask the analyst for clarification, they’re given a new 
user interface and two new items of functionality. They 
decide not to ask any more questions

Lesson #6
Don’t start coding until the requirements are stable 
and understood or else budget time for rework.

As the development team nears the end of their 
scheduled time, it’s apparent they won’t make it. They 
begin to concentrate on the harder work, leaving 
the easier user interface and reporting tasks for last. 
While they had hoped to do unit testing, only a few 
developers are doing it and the effort is spotty at best.

Lesson #7
Code isn’t “complete” until it works. Good unit testing 
is part of the development effort, not an optional item 
to be jettisoned when the schedule is tight.

The QA group is summoned by the PM. Having just 
completed yet another maintenance release for JSI, 
they are frazzled and grumpy. This is the first they’ve 
heard of HU and have little domain expertise. They are 
told that there is a requirements document but it may 
be somewhat out of date. No use cases were written. 
They’ll have to create their own test data. They are 
now even grumpier! 

Lesson #8 
Is your test team always grumpy? Maybe they have 
good reasons!

They start writing test cases but are interrupted from 
that effort with the arrival of code to test. They hurry to 
create test data, guided by the developers and begin 
testing. It’s soon obvious that they can’t make much 
effective progress because they have only a partial UI 
and no reporting capabilities. All data verification will 
have to be done directly in the database.

Lesson #9
To maximize team efficiency, the project plan needs to 
consider testing efficiency as well. This may determine 
feature implementation order.

The software is buggy. The test team tests around the 
areas that aren’t implemented or aren’t working, but 
they are finding a number of blocking issues. Worse, 
when they get a bug fix from development, 30% of the 
time it doesn’t fix the problem. In this state of code 
churning, the project hurtles past the deadline. The 
PM is pressured to ship (and he wants his trip to Tahiti 
too!). The developers and testers are told to increase 
their efforts, work together to achieve the goal, do 
whatever it takes….

Lesson #10
Buggy software takes longer to ship.

The product ships in an unknown state. Last minute 
functionality was added and received only cursory 
testing. A large number of identified bugs are still 
open, although all known critical problems have 
either been addressed or reclassified as “serious”. 
The maintenance release is already being planned. 
The team is exhausted. They’ve worked heroic hours, 
again, and have produced a barely supportable 
product, again. The customer is unhappy, again. The 
product has features the customer doesn’t want or 
understand and it’s missing several major items they 
were expecting. Accolades come down from above for 
another “on-time” delivery.

What went wrong? 
• Management doesn’t recognize that “on time” 

doesn’t equal “satisfied customers.”
• The entire project team is driven by schedule. Every 

decision shows schedule, not quality, consciousness.
• The shortcuts taken to improve schedule time 

(unfinished requirements, insufficient system design, 
no unit test) actually made the project take longer.

• The maintenance release is in reality still the primary 
release, but now the unhappy customer is involved too.



What should have been done differently? What if they 
had applied the lessons?

No problem should have escaped from the phase 
in which it was introduced. Requirements problems 
went all the way through to the customer. Coding 
issues when through to system testing. People are 
exhausted, burned out and not utilized effectively. The 
rewards system is messed up! Six months after this 
project shipped (and eight maintenance releases later) 
an analysis was done to determine the origin of all the 
bugs. The analysis showed the following:

50% of the bugs were introduced in the requirements. 
These were due to unclear and vague requirements 
as well as functionality that was not defined and had 
to be introduced in a maintenance release. This also 
includes data issues and equipment issues where 
the test team didn’t have the right data or equipment 
to reflect the customer’s environment. Additionally 
all bugs associated with the unwanted features are 
counted here since those bugs wouldn’t have occurred 
if the features hadn’t been implemented.

15% of the bugs were due to design issues, 
particularly interfaces between code modules and the 
database.

25% of the problems were coding errors, both in new 
code and regressions introduced in the fixes.

10% of the problems were system integration 
issues that were only visible in the fully integrated 
environment.

A new PM was brought on board to lead project 
“Smarter Now” (SN). He listened carefully to the 
problems encountered by the development manager, 
QA manager and analysts and vowed that his project 
would not suffer the same consequences. To start 
with, he looked at the cost of quality numbers. 
Assigning costs for each bug, depending on the phase 
in which it was introduced versus the phase in which it 
was caught, he found the following:

50% of the total bugs were found by the test group in 
the system test phase. 

The other 50% were found by the unhappy customers. 

Employing widely used cost numbers, he assigned the 
following values:
• $1 for each bug found in the requirements review
• $5 for each bug found in the design review
• $10 for each bug found in unit test
• $100 for each bug found in system test
• $1000 for each bug found by the customer

Doing the math, he determined the 1000 bugs found in 
the product cost as follows:
• Found in requirements: 0
• Found in design: 0
• Found in unit test: 0
• Found in system test: 500 x $100 = $ 50,000
• Found by the customer: 500 x $1000 = $500,000
• Total cost of quality: $550,000

According to the bug distribution of the last project, 
if testing had been done throughout the lifecycle, the 
cost of quality should have been:
• Found in requirements: 500 x $1 = $ 500
• Found in design: 150 x $5 = $ 750
• Found in unit test: 250 x $10 = $ 2,500
• Found in system test: 100 x $100 = $ 10,000
• Found by the customer: 0
• Total cost of quality: $ 13,750

By doing the proper quality assurance, building quality 
in and verifying at each phase that there were no 
escapes, the cost of quality could have been reduced 
by more than $500,000. An ideal model, of course, 
but could it be done in practicality? The QA manager 
stepped forward to be the quality champion. The 
development group and analysts agreed to put quality 
first. The knowledgeable PM agreed to put quality first 
because he knew that building in quality from the start 
would keep the project on schedule and eliminate the 
11th hour heroism.



As with the other projects, this one started with 
the requirements and started late. The PM told the 
analysts to write the most complete requirements 
possible and gave them the time they had requested 
at the beginning of the project, even though this now 
crossed into the allotted development time. Having 
never been given a reasonable timeframe before, the 
analysts enthusiastically launched the project with 
extensive customer meetings. The QA manager invited 
himself to these meetings, knowing that the more 
he understood of the customer’s environment and 
needs, the better job he could do in monitoring quality 
throughout the lifecycle. He also knew that getting 
his team involved early would allow them to ferret 
out design issues, help the developers create good 
unit tests and allow the test team to build solid test 
cases that accurately reflected the customer’s usage. 
The QA manager knew he had the team for the job. 
He had recruited them, hired them, trained them and 
motivated them.  

Lesson #11
Hire the right people … build a strong QA team to 
build and maintain a strong quality consciousness in 
your organization.

During the requirements process, the QA team 
became more and more active as they worked to 
understand the customer’s needs. They helped the 
analysts ensure that each requirement was testable.

Lesson #12 
If requirements are testable, they provide enough 
details for the developers to accurately implement the 
functionality.

The requirements shaped up into exact statements 
of not just what the system had to do (functional), 
but also a description of how it had to do it (non-
functional). The QA team knew that projects had 
suffered from usability and performance issues and 
worked with the analysts to define exact usability 
and performance requirements. The requirements 
effort took twice as long as it had on prior projects – 

almost one third of the total project time. Management 
fidgeted. The PM stayed calm.

A formal requirements review meeting was held with 
all the project team members and the customer. Each 
person had prepared by reading the document. The 
meeting lasted for three hours, finding 100 bugs. 
All agreed these were the best requirements ever 
produced by this organization. The 100 bugs were 
fixed and the requirements were approved at the next 
meeting. It’s important to note that QA identified the 
majority of these problems in the review by continually 
asking, how will I test this? Vague or inaccurate 
requirements were identified. The customer clarified 
several points where the words written by the analyst 
didn’t accurately convey the customer’s needs.

Lesson #13
A cross-functional requirements review will ALWAYS 
save more money by preventing bugs than it costs in 
time and manpower.

The design phase took another month with multiple 
project team reviews as each component was 
documented. QA actively participated in this phase as 
well, concerned with developing their test cases and 
test data. The best way to verify design specifications 
is to use them as the basis for test case creation. If 
they aren’t clear enough to make a test case, they 
aren’t clear enough for coding. 50 bugs were found in 
this phase. Half the scheduled time was gone. The PM 
was still calm.

Also done at this phase in the project was the 
quality risk analysis. The QA team did a high level 
risk analysis and took each of the identified feature 
implementation items and assigned two numerical 
risk ratings: technical risk and business risk. Technical 
risk was used to rate the risk that was inherent in the 
code or implementation due to complexity, traditional 
instability, difficulty in creating test data, and any 
other technical risk factor. Business risk was used to 
assign a value to the impact to the customer if this 
item didn’t work correctly. Development was asked to 



review and provide input into the technical risk rating. 
The analysts and the customer were asked to do the 
same for the business risk rating. QA then multiplied 
the risk items together to get one risk number for 
each testable component of the software. Testing 
was prioritized based on the risk factor which allowed 
the team to mitigate the highest risk items first. In the 
event that there wasn’t sufficient time at the end of the 
schedule, the QA team could talk about risk mitigation 
achieved versus risk still known to exist in the product 
as input into the business decision of releasing the 
software.

Development was excited to start coding because 
they had a clear path ahead. Having been working 
with the more technical QA members, they also 
had a clear understanding of what was expected 
of their code quality and how important unit testing 
would be. They developed their code and unit tests 
simultaneously and kept a rough count of the bugs 
they found. 50 bugs were found by the unit testing. 
Development felt it was the best and strongest code 
they had ever produced and they had done it in only 
two months where previous efforts of similar size had 
taken six months.

System testing began with a daily automated smoke 
test. This automation had been prepared while 
development was still writing the code and was 
used to verify that no issues had crept in to the daily 
build (remember that 30% regression rate on the 
previous project?). The QA team had a strong skill 
mix including technical testers who could verify unit 
tests and build automation as well as pure black 
box testers who specialized in the GUI and reporting 
aspects. The project was apportioned between the 
testers according to their strengths and the final test 
phase began. All test cases had been assigned to the 
features identified above and were prioritized within 
the features. Feature testing was ordered based on the 
risk factors assigned to them so that the highest risk 
items would be tested first. This allowed the QA team 
to be prepared to discuss a ship/no ship decision at 
any point in the testing in terms of risk mitigated.

The QA manager, based on past experience, knew 
that each bug found during testing would cost his 
testers four hours of bug investigation time, on 
average. Fewer bugs means faster testing. He had 
conservatively estimated that his team would find 
half the bugs they found on the previous project or 
250. Since they had 1000 test cases, that meant, on 
average, one bug would be found for every four test 
cases. Given the average bug investigation time of 
four hours, one hour of bug investigation time was 
assigned to each test case in order to determine a 
reasonable schedule. Using this number, he determine 
that he would need 500 hours of test case execution 
time (average of 30 minutes per test case) plus an 
hour of bug investigation time per test case, or a total 
of 1500 hours which is about 38 manweeks of testing 
time. Reaching the 80% risk mitigation goal would 
require 30 weeks of test time. Spread across the five 
testers who had been involved in the project from 
the beginning, six weeks of testing was expected. 
While not ideal, this still met the project requirements. 
As testing commenced, the metrics proved the bug 
estimate was high and testing actually completed in a 
month and achieved 90% risk mitigation. 30 bugs did 
escape to the customer, but these were all lower risk 
issues.

Lesson #14
Cost of Quality metrics are easy to gather and help to 
focus a team on the high return activities

So what was the cost of quality on this release? Let’s 
look at the numbers:
• Found in requirements: 100 x $1 = $ 100
• Found in design: 50 x $5 = $ 250
• Found in unit test: 50 x $10 = $ 500
• Found in system test: 150 x $100 = $ 15,000
• Found by the customer: 30 x $1000 = $ 30,000
• Total cost of quality: $ 45,850

Still not perfect, but a vast improvement over the 
previous effort. And it shows the areas that still need 
to improve. Too many problems are still getting to 
system test. We’d like to see no problems get to the 



customer. But, even with these acknowledged areas to 
improve, we still saved half a million dollars on cost of 
quality and shipped on time.

Summary 
Fiction? No. These cases were created from a 
combination of real projects with real humans. So what 
made the last project successful? More time? No, it 
actually took less time than previous projects. Fewer 
features? No, the customer received the functionality 
they needed. Heroics? No heroes needed. It was the 
people. A quality-conscious team guided by a smart 
PM and driven by an active, involved and capable QA 
team. A quality-focused team will produce a better 
project in a shorter amount of time, every time, but you 
have to have the right people to make it happen. We 
don’t need the heroes to ride in at the end and save 
the project if it’s never in distress. A planned project 
with a quality focus won’t be in crisis. There may 
still be tradeoff decisions, which is why we still used 
risk-based testing to be sure we mitigated the highest 
risk first, but these can be informed decisions with 
measurable consequences. 

People make our projects happen, regular people who 
are doing their jobs, not heroes (although some might 
argue that the PM was heroic to stand up and defend 
quality practices when the schedule lengthened at 
the beginning of the project). The QA team must have 
the skills, personalities and capabilities to perform a 
quality function throughout the lifecycle. Get that team 
together, give them responsibilities and integrate them 
into the project from the beginning. Building a quality 
team, like building a quality product, takes effort. 
Quality doesn’t just happen, the right people make it 
happen.



www.atsqa.org

Copyright 2019 Association for Testing and Software Quality Assurance Global Certification Body, Inc. (AT*SQA) 
 All rights reserved. May not be reproduced without written permission from AT*SQA.


