

Version 2020

DevOps Testing, Version 2020 2

© Association for Testing and Software Quality Assurance

 Table of Contents
Table of Contents .. 2	
0. Introduction to this Syllabus .. 4	

0.1.	 Purpose of this Document .. 4	
1.	 Introduction to DevOps – 90 mins. .. 5	

1.1.	 Overview .. 5	
1.2.	 Origins .. 7	

1.2.1.	 Lean .. 7	
1.2.2.	 Toyota Kata ... 8	
1.2.3.	 Theory of Constraints .. 8	
1.2.4.	 Kaizen ... 8	
1.2.5.	 Agile .. 8	

1.3.	 Myths .. 9	
1.4	 Benefits ... 10	
1.5.	 Transitioning to DevOps – People, Processes and Tools 10	

2.	 Fundamentals – 200 mins. .. 12	
2.1.	 Core Values .. 13	
2.2.	 Three-Way Thinking ... 14	

2.2.1	 The First Way: Systems Thinking .. 14	
2.2.2.	 The Second Way: Constant Feedback Loop 14	
2.2.3.	 The Third Way: Continual Experimentation and Learning 15	

2.3	 The DevOps Continuous Lifecycle .. 15	
2.3.1.	 Continuous Integration (CI) ... 16	
2.3.2	 Continuous Delivery ... 17	
2.3.3.	 Continuous Testing ... 18	
2.3.4.	 Continuous Deployment (CD) ... 19	
2.3.5.	 Continuous Monitoring .. 19	
2.3.6.	 Continuous Feedback, Improvement and Innovation 20	

2.4.	 The DevOps Pipeline ... 20	
2.5.	 Risk-Based Testing .. 21	
2.6.	 DevOps Technologies .. 21	

2.6.1.	 Cloud Computing .. 21	
2.6.2.	 Microservices .. 22	
2.6.3.	 Virtualization ... 22	

3.	 Testing - 245 mins ... 25	
3.1.	 DevOps and Testing ... 25	
3.2.	 Testing During Planning ... 26	
3.3.	 Testing During Coding and Building ... 27	

3.3.1.	 Static Analysis of Code ... 27	
3.3.2.	 Unit Testing ... 27	
3.3.3.	 Test-Driven Development (TDD) .. 28	
3.3.4.	 Behavior-Driven Development (BDD) ... 31	
3.3.5.	 Integration Testing .. 33	
3.3.6.	 API Testing ... 33	

DevOps Testing, Version 2020 3

© Association for Testing and Software Quality Assurance

3.4.	 Testing During Staging ... 33	
3.4.1.	 Functional Testing ... 33	
3.4.2.	 Performance Testing ... 34	
3.4.3.	 Security Testing .. 34	

3.5.	 Testing During Deployment .. 34	
3.6.	 Exploratory Testing .. 34	
3.7.	 Continuous Testing in the DevOps Pipeline ... 35	

4.	 Automation – 120 mins. ... 36	
4.1.	 Automation in DevOps ... 36	
4.2.	 Test Automation ... 37	
4.3.	 Infrastructure as Code .. 37	
4.4.	 Configuration Management .. 38	
4.5.	 DevOps Toolchains .. 39	

5.	 Management – 160 mins. .. 40	
5.1.	 Cultural Changes .. 40	

5.1.1.	 Eliminating Silos .. 40	
5.1.2.	 Collaborative Work Environments ... 41	
5.1.3.	 Specialist vs Generalist ... 41	

5.2.	 Management Challenges ... 42	
5.3.	 Barriers to DevOps Adoption .. 43	
5.4.	 Success Factors ... 44	

6.	 References .. 45	
6.1.	 ISO/IEC/IEEE Standards .. 45	
6.2.	 AT*SQA Syllabi .. 45	
6.3.	 Trademarks .. 45	
6.4	 References .. 45	
6.5.	 Other Sources of Information ... 45	

DevOps Testing, Version 2020 4

© Association for Testing and Software Quality Assurance

 0. Introduction to this Syllabus
 0.1. Purpose of this Document

This syllabus forms the basis for the AT*SQA certification for DevOps. AT*SQA is an
International Standards Organization (ISO) compliant certification body for software
testers. AT*SQA provides this syllabus as follows:

1. To training providers, to produce courseware and determine appropriate
teaching methods.

2. To certification candidates, to prepare for the exam (as part of a training
course or independently).

3. To the international software and systems engineering community, to
advance the profession of software and systems testing, and as a basis for
books and articles.

AT*SQA may allow other entities to use this syllabus for other purposes, provided
they seek and obtain prior written permission.

Please note that specific tool references are provided to help the reader understand
the technology and to provide examples of tools that are in common usage. This is
not an endorsement for these tools by AT*SQA.

DevOps Testing, Version 2020 5

© Association for Testing and Software Quality Assurance

 1. Introduction to DevOps – 90 mins.
Keywords
Agile, lean, Theory of Constraints, Toyota Kata, value stream

Learning Objectives for Introduction to DevOps

1.1 Overview
LO-1.1.a (K1) Recall who can be in the “Dev” and “Ops” roles in a DevOps project

1.2 Origins
LO-1.2.a (K2) Explain the different principles and methodologies that formed the

basis of DevOps
LO-1.2.b (K2) Explain the relationship between Agile and DevOps

1.3 Myths
LO-1.3.a (K2) Explain why the myths around DevOps are not valid

1.4 Benefits
LO-1.4.a (K1) Recall the benefits of a DevOps implementation

1.5 Transitioning to DevOps – People, Processes and Tools
none

 1.1. Overview

DevOps first came to people’s attention in 2008 when Patrick Debois [Debois11]
invited like-minded people to a conference to discuss how the delivery of product as
well as infrastructure could use the concept of the Agile software development
lifecycle. DevOps stands for “Development” and “Operations.” It refers to people
(primarily the development team and the operations team) working together to build,
deliver, and run robust software. Under DevOps, the software development process
should not only focus on writing code but, at the same time, should also consider
other aspects of development such as testing, deployment, and delivery. The
successful delivery of high-quality software should be used to measure the success of
software development, which is frequently not the case with most development
models.

The reason for the popularity and movement towards DevOps may be better
understood with an example. Let's consider a software company with a traditional
development approach. A software development process could be as follows:

DevOps Testing, Version 2020 6

© Association for Testing and Software Quality Assurance

• The development team writes code to implement new features and/or fix
bugs. The new code featuring the changes resides on the development
environment and may or may not be tested by the development team.

• The code is then deployed in the test environment (which should mimic the
production environment, but in reality it often does not) where it is verified by
the QA team.

• The QA team might find issues; developers fix those issues; QA tests again
and this goes back and forth several times.

• The new code is then provided to the operations team for deploying into the
production environment. The operations team is now responsible for the
release, delivery and sometimes even management and maintenance of the
code.

There are many issues with this approach. The activities involved from creating the
software to finally deploying it in the production environment often last weeks or
months. Priorities of the Development team, QA team and IT Operations teams may
not be aligned and may actually be in conflict. The Development and QA teams are
focused on new development and testing of the release, while the Operations team
cares about the stability of the production environment. The Development and
Operations teams may not be aware of each other's work and work culture. The
teams work in different types of environments, leading to the possibility that the
development environment does not reflect the production environment. In that case, a
product that works successfully in development may fail when deployed to production.
While the Operations team is busy with deployment activities, the Development team
may get a request for a new feature or a defect fix, or may begin developing a new
product. In this case, if the Operations team needs help with deployment, the
Development team may not be available to assist. This gap in communication and
necessary collaboration can lead to product failure in production and issues with
quality throughout the organization. It is common to see these types of collaboration
gaps. Poor collaboration can cause many issues in the application deployment to
different environments. Issues are often resolved informally, via email, chat, calls,
meetings, and so on, resulting in quick fixes with insufficient documentation and a
high likelihood of the same problems recurring with the next deployment.

The classic organizational structure tends to put strict borders between the
Development team, QA team and Operations team. In this model, no matter how
efficient a process is within a single department, it may not be the same for the next
one. Furthermore, if there are walls between departments, problems will be reflected
in the quality and maintainability of the product. DevOps breaks down the silos and
barriers so that the Development (including QA) and the Operations teams have a
more efficient way to work together across the entire software lifecycle, from
development to delivery. DevOps requires collaboration between the different
disciplines of software development.

DevOps Testing, Version 2020 7

© Association for Testing and Software Quality Assurance

DevOps is a cultural shift focused on building and operating at high velocity. It is a
development approach that involves activities that are ‘continuous’: continuous
development, continuous integration, continuous delivery, continuous testing,
continuous deployment, and continuous monitoring.

Development roles in DevOps are not limited to people titled as developers or
software engineers. The roles include everyone who is involved in making the
software before it reaches production, which includes product managers, business
analysts, product owners, and quality assurance testers. Similarly, operations roles
include everyone who is involved in managing production, including deployment,
execution and maintenance. This includes system operators, systems engineers,
DBAs, network engineers, and security experts. DevOps requires people in these
roles to work together from the beginning of a software development project until it is
delivered, breaking down the walls that stand between different departments.

 1.2. Origins

DevOps represents a convergence and application of different principles, from
manufacturing to leadership, in the IT industry to streamline the release of IT
products. The roots of DevOps can be found in Lean, Toyota’s Kata, the Theory of
Constraints, Kaizen, as well as in the evolution of Agile. Each of these is discussed
briefly below.

 1.2.1. Lean
The idea of Lean originated from lean manufacturing in the Toyota Production System
in the 1990s. Lean manufacturing focuses on parts of the system that add value, by
eliminating waste everywhere else. Lean software development applies similar
concepts to the software industry. Waste that can be eliminated in these areas
include unnecessary software features, communication delays between stakeholders,
slow application response times, inefficient defect management, and overbearing
bureaucratic processes.

Although software development is different than manufacturing, Lean software
development has proven to be useful to optimize and enhance value streams. A value
stream is a set of steps from the start of value creation until the end result is delivered
to the customer. Other features in Lean software development focus on eliminating
waste, building in quality, creating knowledge, deferring commitment, delivering
quickly, respecting people, and optimization as a whole.

DevOps shares many of the Lean goals and integrates many of the Lean principles by
focusing on improving work culture, fostering collaboration between developers and
operations, optimizing workflow, assuring quality at the source, and respecting every
individual.

DevOps Testing, Version 2020 8

© Association for Testing and Software Quality Assurance

 1.2.2. Toyota Kata
A kata is a small, well-structured protocol or routine that becomes second nature
through practice. In 2009, Mike Rother wrote Toyota Kata: Managing People for
Improvement, Adaptiveness and Superior Results, which framed his twenty-year
journey to understand and codify the Toyota Production System. The point of the kata
is to acquire habits through practice, rather than to just memorize the routine.
This is often known as the Improvement Kata and is a process to promote continuous
improvement. It is a structured way to create a culture of continuous learning and
improvement at all levels, through daily habits or routines.

The steps to improvement are as follows:
 1) Understand the vision and direction for the project
 2) Analyze current conditions
 3) Establish target conditions
 4) Plan ! Do ! Check ! Act (PDCA) towards the target

Daily habits/routines help people strive towards the goal. When leveraging the
Improvement Kata, the team is required to set the direction. It provides the
opportunity for the team to thoroughly understand what target they are trying to
achieve and to solve problems and experiment toward achieving that target in a
methodical way.

 1.2.3. Theory of Constraints
The concept of "Theory of Constraints" was first introduced in 1984 in Dr. Eliyahu M.
Goldratt's book The Goal and further detailed in his sequel, The Theory of
Constraints. It is a methodology for identifying and systematically taking actions to
improve and remove the most limiting factors (i.e., the bottlenecks) that stands in the
way of achieving goals and success. In DevOps, the "Theory of Constraints" has
become a reputed model for eliminating waste, recognizing opportunities for better
collaboration, and streamlining the flow of work down the value stream.

 1.2.4. Kaizen
Kaizen, meaning “improvement”, was initially practiced in Japan after World War II to
eliminate waste in manufacturing processes. The goal behind Kaizen is to
continuously improve in small increments and to engage all stakeholders in the
improvement process. As with other practices born from manufacturing, it seeks to
improve the efficiency of all the activities that contribute to the final product. When
applied to software development, it is similar to the other approaches that are
designed to drive efficiency and create an inclusive environment where stakeholders
are invited to engage and participate in the improvements.

 1.2.5. Agile
In 2001, the Agile methodology was first identified via the “Agile Manifesto”, although
such practices were already being applied in eXtreme Programming (XP) and other
approaches. The goal of the Agile methodology was to move away from the rigid,

DevOps Testing, Version 2020 9

© Association for Testing and Software Quality Assurance

waterfall-oriented, documentation-heavy world of software development, which
resulted in software development projects being delivered late, over-budget, and
failing to meet stakeholder expectations. The goal was to move to an iterative
approach, where there was constant interaction with the customer or end-users
(called product owners) [Gregory19].

The “Agile Manifesto” outlines software development practices to fit within the
following values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

The Agile methodology is primarily concerned with the creation of the software, not
the actual delivery. Once a product is developed using Agile, it is often handed off to
the Operations team for successful delivery.

Agile has become one of the core drivers for DevOps. As code was developed in
smaller increments, the need for faster, easier and more reliable testing and delivery
to the various environments, including production, became important. Traditional
Operations teams and processes where not able to adapt to these needs, which
resulted in major bottlenecks being created at the dev-to-test and test-to-production
handoffs. Environment controls and constraints became significant bottlenecks in the
smooth flow of the software from point to point in its journey from development to
deployment.

DevOps bridges this gap and removes the bottlenecks between Development and
Operations to ensure successful delivery. It does so by bringing the Operations and
Development teams together during the entire software lifecycle, from development to
delivery.

 1.3. Myths
There are several myths around DevOps. It is a good idea to be clear about what
DevOps is not. DevOps is not about:

• Removing or replacing Ops: DevOps does not mean that Ops is going away
or that developers are taking over Ops responsibilities. Development and Ops
both have experiences and knowledge to contribute. Neither role is being
eliminated.

• A bunch of fancy tools: DevOps is not about introducing a lot of tools without
any processes in place. Unwise use of tools without proper process and
people can do as much damage as the wise use of tools can bring benefit.

DevOps Testing, Version 2020 10

© Association for Testing and Software Quality Assurance

Even though DevOps leverages automation and tools, it is an organizational
change that is supported by those tools, not the tools themselves.

• A job title: DevOps is a not a job title

• Replacing Agile: DevOps principles and practices are compatible with an
Agile methodology, and, in many cases, DevOps is a logical extension of
Agile. DevOps does not replace Agile, in fact it encourages an organization to
embrace Agile before moving to DevOps.

• A separate team: DevOps is a unification of teams to reach a common goal
efficiently

• Doing all the work with half the people: DevOps does not replace people, it
just allows people to work more efficiently and collaboratively

• One (right) way to do DevOps: There are many ways to implement DevOps
and the ideal implementation depends on the organization’s own goals and
needs.

 1.4 Benefits

Proper implementation of DevOps has been shown to return significant benefits to an
organization. These include the following:

• The ability to assess quality at every stage of development and deployment,
resulting in a high-quality product with fewer defects

• Collaboration and management throughout the application lifecycle

• The ability to release small increments of functionality more often

• Capturing feedback early and frequently to improve both the product and the
process

• On time delivery and lower cost of delivery thanks to a higher quality product
and more efficient delivery process

• Reduction in vendor and third-party issues by increasing collaboration and
transparency

• Faster time to market by employing efficient processes and effective
communication

 1.5. Transitioning to DevOps – People, Processes
and Tools
Successfully transitioning to DevOps requires having the right people with the right
responsibilities and training, efficient and well-understood processes, and tools to
assist with the automated processes. The processes needed for DevOps are
discussed in Chapter 2. Chapter 3 describes testing in DevOps and how it is

DevOps Testing, Version 2020 11

© Association for Testing and Software Quality Assurance

implemented throughout the software lifecycle. Chapter 4 covers how tools are
integrated into the processes. Chapter 5 discusses how people fit into the DevOps
model as well as some management aspects, challenges and cultural changes.

DevOps Testing, Version 2020 12

© Association for Testing and Software Quality Assurance

 2. Fundamentals – 200 mins.
Keywords

binary files, CAMS, class files, continuous build integration, continuous delivery,
continuous deployment, continuous lifecycle, continuous feedback, continuous
improvement, continuous innovation, continuous monitoring, continuous testing,
DevOps pipeline, microservice, package files, source code, three-way thinking,
virtualization

Learning Objectives for Fundamentals

2.1 Core Values
LO-2.1.a (K1) Recall the four core values of DevOps
LO-2.1.b (K2) Explain how automation relates to DevOps

2.2 Three-Way Thinking
LO-2.2.a (K2) Explain how Three-Way Thinking should be employed in the DevOps

process

2.3 The DevOps Continuous Lifecycle
LO-2.3.a (K1) Recall the elements of the continuous lifecycle
LO-2.3.b (K2) Explain the expected benefits of the phases of the continuous

lifecycle
LO-2.3.c (K2) Explain how the elements in the continuous lifecycle should be

applied to a given scenario

2.4 The DevOps Pipeline
LO-2.4.a (K1) Recall the stages of the DevOps pipeline

2.5 Risk-Based Testing
LO-2.5.a (K1) Recall how risk-based testing can help determine what to test

2.6 DevOps Technologies
LO-2.6.a (K2) Explain how the DevOps technologies can be applied to a given

scenario
LO-2.6.b (K2) Understand how virtualization can be applied to facilitate test and

deployment automation

DevOps Testing, Version 2020 13

© Association for Testing and Software Quality Assurance

 2.1. Core Values
The acronym CAMS is often used to describe the four core values of DevOps:
Culture, Automation, Measurement, and Sharing.

• Culture (C): Culture may present a challenge to DevOps implementation.
Wanting to do DevOps by investing in DevOps tools, training staff, and hiring
expert consultants, without a proper introduction to DevOps mindset,
behaviors, and incentives, may result in failure. In order for DevOps to
succeed, an organization’s culture must transform into a more collaborative,
process-defined, and people-centric environment to drive continuous
improvement.

Some of the underlying inspirations of DevOps, as discussed in Chapter 1,
come from Agile and Lean. The C in CAMS points to Agile’s core value of
‘individuals and interactions over process and tools,’ and Lean's streamlining
operations and reducing waste. The end goal is to maximize customer value.

In DevOps, a culture of continuous collaboration, communication, and
fostering respect for each other is needed for it to be successful.

• Automation (A): DevOps is about speed, flexibility, resiliency and continuous
improvement. Automation is a critical part of DevOps. Once the culture is
understood, automation is used to accelerate and execute the process
smoothly.

The ‘continuous’ activities in DevOps (continuous development, continuous
integration, continuous testing, continuous deployment, continuous
monitoring, continuous feedback and continuous delivery) can be achieved by
automation. It is a practical aspect of DevOps and is required for the
successful implementation. Automation applies to server builds, database
software installations and configurations, network settings, storage
allocations, schema builds, code compiles, testing, job scheduling, and more.

• Measurement (M): Measurements are important for understanding if the
changes being made are useful and beneficial. It is crucial in DevOps to
identify the correct measurements and use them to improve the process. For
DevOps to succeed, inefficiencies and avoidable steps must be consistently
removed. Lean and Kanban techniques can be applied to trim inefficiencies
and reduce waste.

Measurements should be taken during the development and delivery process
to see how long each step takes, and to evaluate the need for each step.
Based on the measurements, decisions can then be made to remove
impediments, smooth the workflow, maximize efficiencies, and drop
unnecessary steps.

DevOps Testing, Version 2020 14

© Association for Testing and Software Quality Assurance

• Sharing (S): A core element of DevOps is sharing information. The S in
CAMS encourages DevOps teams in sharing, openness and transparency. It
asks for discrete improvement. Business, development, and operations teams
must communicate with each other to achieve this. Messages need to be sent
and received simultaneously upstream and downstream.

Each team member needs to understand the business needs, address
operational challenges early, and communicate via a feedback loop about
what needs to be done to implement better-performing, resilient systems.

 2.2. Three-Way Thinking
One of the key concepts of DevOps is 'Three-Way Thinking' [Kim12]. The Three Ways
describe the importance of looking at the performance of the system as a whole,
enabling and amplifying feedback loops, and focusing on creating a culture of
continual experimentation and learning. DevOps uses Three Ways as a set of
principles that can be used to implement the practices of DevOps.

 2.2.1 The First Way: Systems Thinking
The First Way is systems thinking. Instead of thinking about only one piece of the
project, such as development or testing, the First Way encourages thinking in terms of
the whole system and includes building in quality by preventing defects from being
passed downstream. The First Way enables a left-to-right flow of work from business,
through development, to operations, and finally to the user, where the value is actually
created. The goal is to speed up the process of flow from left-to-right. This is not
achieved by reducing work or personnel (e.g., not doing proper testing, not having
QA). A better way would be to have the proper work and roles but have smaller pieces
of work flow smoothly from left-to-right. This will result in a faster flow, quality control
at each small step, faster feedback, and will ultimately help deliver value faster and
with less cost.

The First Way also focuses on removing constraints. A left-to-right flow will almost
always have constraints associated with it and bottlenecks will exist.. Instead of
jumping over them or putting them aside to take care of later, the First Way considers
removing those constraints that are on the path and keeping the continuous left-to-
right flow. Practices to accommodate the First Way include continuous build,
integration, test, and deployment processes, creating environments on demand, and
building maintainable systems.

 2.2.2. The Second Way: Constant Feedback Loop
While the First Way emphasizes the flow of work from left-to-right, the Second Way
focuses on the processes that enable rapid and constant feedback from right-to-left at
all stages of developing the system. It requires continuous feedback to enable faster
detection of and recovery from problems and to prevent those problems from
happening again. An important point in the Second Way is that the flow from left-to-
right should stop once an error is found and the feedback from that error should be

DevOps Testing, Version 2020 15

© Association for Testing and Software Quality Assurance

relayed as fast as possible to the source, so the error can be fixed and subsequently
prevented.

The Second Way also helps with process improvement. Short, continuous feedback
loops identify problems as they occur and allow the team to analyze each problem for
further action. This facilitates problem resolution and helps to prevent the same or
similar mistakes being repeated. This maximizes the opportunities for an organization
to learn and improve. A good way to achieve the short, continuous feedback loops for
the Second Way is to have a continuous integration, build and deployment process
working together with a fast, automated suite of tests. These two things together will
provide quick feedback to developers and allow defects to be detected and eliminated
at the point of introduction, rather than further downstream in the process.

 2.2.3. The Third Way: Continual Experimentation and Learning
While the First Way addresses workflow from left-to-right and the Second Way
addresses the reciprocal fast and constant feedback from right-to-left, the Third Way
focuses on creating a culture of continual learning and experimentation. The Third
Way enables the creation of a high-trust culture that supports a dynamic, disciplined,
scientific approach to experimentation and risk-taking. This creates a learning culture
that benefits from both successes and failures. No matter which team someone is
working on, Dev or Ops, the Third Way values the cumulative and collective
experience of everyone. The outcomes of the Third Way include allocating time for the
improvement of daily work, creating rituals that reward the team for taking risks, and
purposely introducing faults into the system to increase resilience.

 2.3 The DevOps Continuous Lifecycle
For a successful DevOps culture, both the Dev and Ops teams should follow a
‘continuous’ lifecycle in an effective manner. The DevOps continuous lifecycle
includes the following:

• Continuous integration

• Continuous delivery

• Continuous testing

• Continuous deployment

• Continuous monitoring

• Continuous feedback

• Continuous improvement

• Continuous innovation
These lifecycle components are important for accomplishing the goal of making each
software delivery on-time and successful.

DevOps Testing, Version 2020 16

© Association for Testing and Software Quality Assurance

 2.3.1. Continuous Integration (CI)
Continuous integration is the practice of merging all developers’ working code to a
main branch of the codebase in a shared repository at least several times a day. The
developers’ changes (commits) are validated by creating an automated build and
running automated tests against the build. An automated build process includes the
following activities:

• Compiling source code into class files or binary files

• Providing references to third-party library files

• Providing the path for configuration files

• Packaging class files or binary files into package files

• Labelling the source code with the build identifier

• Executing automated test cases

• Deploying package files on local or remote machines

• Reducing manual effort in creating the package file

Continuous integration ensures that the application does not break whenever new
commits are integrated into the main branch of the codebase. Each check-in made by
a developer is verified by either a pull mechanism, where an automated build is
executed at a scheduled time; or a push mechanism, where an automated build is
executed when changes are saved in the repository. Automated unit tests are
executed against the latest changes available in the source code repository.

When changing and updating code, a developer takes a copy of the current codebase
from the central repository. This copy is then used to make changes. When the
changes are completed, the code is checked back into the repository to be
incorporated into the next build. This becomes complicated when other developers
are also making and committing changes to the repository. If one change should
break another change, or break the base code, it needs to be found and fixed as
quickly as possible to minimize the impact of the problem. With smaller increments of
changes, troubleshooting to find the offending change is easier. As code is checked
out and changed, the local copy the developer has obtained becomes out of sync with
the repository. It is very important to maintain the code repository with updated code
and libraries from the whole team.

The goals of continuous integration are to maintain the code repository, prevent a
backlog of changes that have not been incorporated into the repository and, by
frequent testing, remove any surprises that might occur when the code is deployed
into an environment. The CI process includes the following:

• Commit changes as they are made

• Build each committed change with an automated process

• Test the build with automated tests

DevOps Testing, Version 2020 17

© Association for Testing and Software Quality Assurance

• If anything breaks, fix it immediately while everyone remembers what was
changed

Most of these continuous integration tasks can be automated; however, it is a process
which developers must adopt for CI to work as intended. There are many continuous
integration tools available to help in this process. There are tools that work locally
(e.g., Jenkins) and there are cloud-based options too (e.g., Travis CI and Circle CI).
All of them work on the same principles. The CI system watches a code repository
(e.g., Git, SVN). When a new commit to the repository occurs, the CI systems takes
the new commit and starts a build process which builds components such as compiled
binaries or data files. Once the build is successfully completed, the CI system then
spawns tests that can be run on the build artifacts. The results are reported to the
developers.

The following are good practices needed to establish a successful CI process:

• A single source code repository should be maintained at all times

• The build should be automated

• Code should accompany unit tests and the build should be self-testing

• Code should be committed to the build as soon as it is ready for integration

• Every commit should be built to verify the integrity of changes

• Users are authenticated and access to the build server is controlled

 2.3.2 Continuous Delivery
Continuous Delivery is a process to deploy software into the appropriate environment
in an automated fashion and receive continuous feedback to improve the quality of the
process and the software. It builds upon an existing CI process where teams produce
software in short cycles, ensuring that software can be reliably released at any time.
Ideally, at the end of every CI build, the software is delivered to the test environment
for the Quality Assurance (QA) team to test, and then to the operations team for
delivery to the production environment. In reality, not all builds from CI are ready to go
to QA and, similarly, software that comes out of QA may not be ready to go to
production. This is often handled by using multiple levels of test environments (e.g.,
integration, user acceptance testing (UAT), stage). Only the builds that are truly
"ready" (QA ready, production ready) will be allowed to go forward to the users. The
goal of Continuous Delivery is to deliver new features that developers are creating to
the customers and users as soon as possible.

Continuous Delivery requires the creation of a delivery pipeline, often referred to as
the DevOps pipeline. To deliver feature-complete software from one environment to
another (e.g., development to QA, QA to production) often requires multiple iterations.
In order for this to work successfully, orchestration of the deployments of code,
content, applications, middleware, and environment configurations is required.

DevOps Testing, Version 2020 18

© Association for Testing and Software Quality Assurance

A strong foundation of CI and a good automated test suite with good coverage of the
codebase is needed for Continuous Delivery to succeed. The trigger to start
Continuous Delivery is manual, but once the delivery process begins, all the activities
in the delivery process should be automated.

The following are good practices to establish for a successful Continuous Delivery
process:

• Clone all environments as much as possible to mimic the production
environment

• Automate deployment

 2.3.3. Continuous Testing
Continuous Testing is the execution of tests repeatedly against a codebase. Testing
provides the quality gates throughout the DevOps pipeline and increases confidence
in the product. The success of Continuous Delivery or Deployment relies on
Continuous Testing. The quality of the tests and the testing process determines the
quality of the released software. At every stage of the DevOps pipeline, Continuous
Testing ensures that what is being delivered through a stage is stable and good
enough to progress to the next stage of the pipeline.

For Continuous Testing to succeed, the QA and Operations teams should be
integrated with the Development team. Testing should be incorporated as much as
possible into the DevOps pipeline. For example, performance and security testing
should not be an independent activity but should be incorporated into the pipeline at
the earliest possible point where testing can be effective. To facilitate early testing,
mocks and stubs are commonly used to replace components that are not available
and to perform tests that might be damaging.

It is important to remember that some types of testing, such as system-level
integration testing, may be best performed on the whole product, or at least a large
subset. This type of testing still belongs in the pipeline, but may come at the end
rather than following after each build.

The following are good practices to establish for a successful Continuous Testing
process:

• Understand and introduce shift-left testing

• Establish effective test automation throughout the lifecycle

• Use effective testing tools to manage the continuous testing lifecycle from test
case creation to defect reporting, fixing and retest

• Continuously review, update, and refactor the existing test cases to increase
coverage and efficiency

DevOps Testing, Version 2020 19

© Association for Testing and Software Quality Assurance

 2.3.4. Continuous Deployment (CD)
Continuous Deployment (CD) takes the Continuous Delivery process one step further.
A change that passes all stages of the DevOps pipeline is released to the user. The
trigger to deployment is automatic; therefore the whole release process is automated.
There is no set release day; all stakeholders can see the changes taking place as
soon as the changes are committed and have passed the tests. A failed test prevents
a change from going to the production environment.

In Continuous Delivery, an application is automatically staged in preparation for
production, but it must be manually deployed to production. Before that, however, the
application must be manually reviewed and verified. Continuous Deployment adds
automation to the process, making it (theoretically) possible for changes to go live
within minutes after the code has been checked into the repository and verified by the
automated processes.
One downside of continuous deployment is that it eliminates the safeguards that come
with manual verifications. For this reason, application delivery teams that implement
Continuous Deployment must adhere to best coding and testing practices to ensure
the application is production-ready. Another potential downside occurs when the
user(s) is not ready to receive the new release, perhaps because training on a new
feature may be required.

The following are good practices to establish for a successful Continuous Deployment
process:

• Limit or eliminate human interaction, requiring a well-established pipeline to
do this automatically

• Conduct rigorous testing throughout the pipeline to provide enough
confidence to deploy features to production automatically

• Require each member of the team to accept ownership and responsibility for
the artifacts being deployed to the customer (code, feature, tests)

• Have a well-established and robust process for rolling back to a previous
release in the event it becomes necessary

 2.3.5. Continuous Monitoring
Continuous Monitoring allows the DevOps team to monitor the application constantly
in the production environment to ensure that the software is performing at an optimal
level and the environment is stable. Continuous Monitoring helps in diagnosing and
fixing errors as soon as they are found. It also helps in understanding the application's
usage pattern and lets the DevOps team be proactive rather than reactive to any
errors that may occur.

The following are good practices to establish for a successful Continuous Monitoring
process:

• Identify what should be monitored and how frequently

DevOps Testing, Version 2020 20

© Association for Testing and Software Quality Assurance

• Ensure tools and processes are in place to make informed decisions based
on data from monitoring

 2.3.6. Continuous Feedback, Improvement and Innovation
An important part of DevOps is the focus on improvement. This means that feedback
must be continuously gathered from all stakeholders affected by the process. This
feedback is then analyzed by the team to determine areas for improvement and to
identify opportunities for innovation. DevOps implementation can suffer from a lack of
enthusiasm once the tools and processes are in place and running smoothly. It is
important for the team to remember that improvements will always be needed as new
and more efficient processes and tools become available all the time. Gathering
feedback and using it to inspire innovation to achieve overall improvement is a critical
aspect of a successful DevOps implementation.

The following are good practices to establish for successful Continuous Feedback,
Improvement, and Innovation:

• Understand the collaboration between the different teams

• Implement a collaboration strategy

• Ensure collaborative project management tools are used

• Share continuous feedback between the different teams

 2.4. The DevOps Pipeline

The flow of a software product from conception to deployment is sometimes referred
to as the DevOps pipeline. This pipeline incorporates all the continuous activities
described in Section 2.3, but is often shown in a simplified form with these primary
stages:

DevOps Pipeline: Plan ! Code ! Build ! Stage ! Deploy
The planning stage in DevOps is a pre-CI/CD stage where requirements are gathered,
tested, and polished. Once a set of well-tested requirements is agreed upon,
developers start coding those requirements. As they code, developers commit their
changes to a source control repository. Each developer’s source code should have
accompanying unit tests. The commit triggers a build. Once all the code compiles
properly and all unit tests pass, the build is considered successful. If any test fails, the
build is unsuccessful, and the commit will roll back to the previous successful commit.
This is Source Control Management (SCM) and continuously cycles for all subsequent
commits. The codebase is built up this way. This Continuous Integration process
ensures that passing tests accompany every piece of code written by the developers.
An SCM tool helps in this process as it stores the code in repositories, versions the
code, and helps in team collaboration. Git is an example of a commonly used SCM
tool.

DevOps Testing, Version 2020 21

© Association for Testing and Software Quality Assurance

The tested and verified build then moves to a staging environment that mimics the
production environment. This is where integrated tests and other necessary tests such
as functional, non-functional, performance, security, user acceptance, and exploratory
tests, are executed. Some of these tests may be automated while others may rely on
manual execution by testers or other stakeholders. Instead of going directly to the
staging environment, software is often tested in a series of environments that are
targeted for particular types of tests (e.g., security, performance, UAT) before going to
the staging environment.

Once the application is thoroughly tested in the staging environment, it is ready to be
deployed. Depending on how the DevOps pipeline is set up, it can be deployed to a
pre-production environment where the operations team may run more tests, such as
operational acceptance tests. It can also be deployed directly to the production
environment.

 2.5. Risk-Based Testing

Risk is a significant factor in determining the best test approach and the level of
testing required. Risk level is generally determined by considering the impact of a
possible failure and the likelihood of that failure occurring. This information is used to
determine how much testing is required, how much documentation is needed and how
the testing should be prioritized. This information may also help to understand which
tests must be included in automation suites and how often they should be executed.

Higher risk software generally requires more formal approaches with more complete
documentation. Lower risk software can adopt a lighter approach and may have little
or no documentation required. Using risk prioritization, commonly called risk-based
testing, on every project is a strong approach and helps to prioritize and define all
testing activities.

It should be noted that there is a degree of error in assessing risk as it is essentially a
qualitative exercise. Contingency plans are helpful when low risks may become high
risks. This can happen when the impact and/or the likelihood of the risk occurring
changes after the assessment occurred. A continuous evaluation of risk assessments
can reduce the chance of such errors.

 2.6. DevOps Technologies

All DevOps team members, whether they be a developer, tester or part of the
operations team, should be familiar with some of the commonly used technologies
that make DevOps successful.

 2.6.1. Cloud Computing
One important feature of a reliable DevOps implementation is the ability to create
environments. Cloud Computing environments are often used for development and
testing because they are fast to create, easy to re-create and help to refine the

DevOps Testing, Version 2020 22

© Association for Testing and Software Quality Assurance

requirements for the production environment. Because of the speed required to
provide a smooth flow from development to release, environment configuration cannot
be a bottleneck. This means the environment creation, configuration and eventual
destruction must be automated. Cloud services are ideal for this by providing an easily
extended and contracted environment where new test and development environments
can be created as needed.

Environment creation and control is one of the primary success factors in a DevOps
implementation. Because testing may be occurring in multiple areas at the same
time, such as functional testing new features while performance testing an integrated
set of features, multiple dedicated environments are needed. In traditional
approaches, time is lost waiting for environments to be configured for a specific
purpose. By using cloud services, environments can be procured for a lower cost and
the time required for use can be limited to what is actually required. Both the
Operations team and the Development team need to be engaged to automate the
environment creation and configuration activities. While this process immediately
benefits development and testing, it also helps the eventual production deployment
with documented and tested configurations.

See Section 4.3 for a discussion of Infrastructure as Code.

 2.6.2. Microservices
The microservice architectural approach entails building one application as a set of
independent services that communicate with each other, but are configured
individually. The benefit of building an application this way is that it provides low
coupling in the application design. This improves design, troubleshooting,
maintenance and may also enable early testing. Because there is low coupling, an
individual microservice can be changed with little effect on the rest of the system.
Each microservice can be developed and released independently of other system
components. With the high rate of deployment, microservices allow for keeping the
whole system stable, while fixing problems in isolation.

 2.6.3. Virtualization
Virtualization is important for DevOps because it provides identical environments for
the Dev and Ops teams. The environments can be launched in a timely and efficient
manner, removing a potential bottleneck in the DevOps pipeline. Virtualization
enables continuous testing by providing anytime, anywhere access to a complete,
simulated production-like test environment.

Before virtualization was available, a production or test environment existed on
physical servers on-site. Organizations would purchase these servers and install
operating systems on them. The product software would reside on top of the operating
systems. Because these servers were often dedicated for a particular environment, it
was not unusual for only a small portion of the server resources to be used at any
given point in time. As environments multiplied (dev, test, UAT, stage, production), so
did the servers and their associated maintenance costs and efforts (e.g., lab space,

DevOps Testing, Version 2020 23

© Association for Testing and Software Quality Assurance

power, air conditioning, system administrators). When changes to the environments
were required, such as an operating system upgrade or a configuration change,
significant downtime was incurred and scheduling became problematic.

Virtualization technology addresses many of these problems. With virtualization, the
physical server still has its own operating system. On top of that operating system, a
hypervisor layer is installed. The hypervisor, also known as a Virtual Machine Monitor
(VMM) is computer software or hardware that creates and runs the virtual machines
(VMs). Some popular hypervisor providers are VMware, VirtualBox, and Microsoft
Hyper V.

The hypervisor allows the installation of multiple virtual machines on a single physical
machine. Each virtual machine can have a different operating system and can run
different applications. To the software, each virtual machine looks and acts just as a
physical server would. There are significant cost savings and efficiency gains by
running multiple virtual machines within one physical server. Memory and disk space
on the physical machine are allocated among the virtual machines, allowing maximum
utilization of the physical resources.

Virtualization in the Cloud
In recent years, with the invention of efficient cloud infrastructure, more and more
companies are moving towards deploying VMs in the cloud with providers such as
Amazon (AWS), Google (Google Could Provider, GCP), and Microsoft (Azure). This
eliminates the need to purchase physical machines as servers. Having a virtualized
environment in the cloud is cost-effective. Each physical machine is divided into
multiple VMs and each one only uses its allocated CPU, memory and storage
resources. The payment is on demand and a pay per use model. It is also easy to
scale. If more memory or disk space is needed, it is simply a change to a
configuration parameter rather than a physical installation. If more instances of the
application are needed, additional VMs can be configured and launched. The ability to
rapidly configure and to pay for only what is needed has significantly increased agility
for many organizations.

The hypervisor-based virtualization model has some limitations. Each virtual machine
created on top of the virtual layer still needs to have an operating system installed,
with its own memory management, device drivers, daemons, and other resources.
With hypervisor virtualization, portability of the application is not always efficient. The
limitations associated with hypervisor virtualization can be resolved with more recent
ways to virtualize, such as container-based virtualization.

Container-based Virtualization
Container-based virtualization wraps the software in a complete file system that
contains everything it needs to run: code, system tools, system libraries – anything
that can be installed on a server. Container-based virtualization requires a server(s)
which could be either a physical machine or a virtual machine. The operating system
is installed on the server. In the operating system, a container engine is installed,
which allows the operating system to run multiple guest instances. Each guest

DevOps Testing, Version 2020 24

© Association for Testing and Software Quality Assurance

instance is called a container. Within each container, an application with all its libraries
and dependencies can be installed. An example of a popular implementation of
container-based virtualization is Docker containers, an open-source development
platform.

One of the key differences between the hypervisor-based virtualization model and the
container-based virtualization model is the replication of the kernels. In the hypervisor
model, each application is running in its own copy of the kernel and the virtualization
happens at the hardware level. In the container model, there is only one kernel which
will supply different binaries and runtime to the applications running in isolated
containers. Each container will share the base runtime kernel which is the container
engine. In this model, virtualization happens at the operating system level. Containers
share the host's OS making the virtualization more efficient and light-weight. The
container-based virtualization model also allows creation and running of multiple
environments, as well as running different versions of an application in each
container, in an efficient manner without interfering with one another.

Container-based virtualization is more cost effective than hypervisor-based
virtualization. Container-based virtualization does not create an entire virtual operating
system. Instead, only the required components are packaged up inside the container
with the application. Therefore, containers consume less CPU, RAM and storage
space than VMs, allowing more containers to be running on one physical machine
than VMs. Containers house the minimal requirements for running the application,
which can spin up as fast as a process. A container can be several times faster to
boot than a VM. Lastly, and a very important benefit, is the ease of portability.
Because containers are essentially independent self-sufficient application bundles,
they can be run across machines without compatibility issues. Applications that are
running in Docker containers can run on a developer’s laptop as well as on an on-
premise infrastructure. They can also run in the cloud or can be moved to a Platform
as a Service (PaaS), such as OpenShift by Red Hat or Bluemix by IBM.

The risk with container-based virtualization is the potential corruption or crash of the
kernel by one application. Because the kernel is shared, this type of corruption could
affect other applications running on the same kernel.

Service Virtualization
Service virtualization is used when a service is needed by the software under test, but
is not available for some reason. In this case, a virtualized service can be created
which will act like the real service to any interfacing software. Various tools exist to
create these virtual services (sometimes called “stubs on steroids”), including Tricentis
by Tosca, SoapUI by SmartBear, IBM Green Hat, and LISA by CA.

Virtualized services are particularly helpful when testing API-driven applications,
cloud-based applications and service-oriented architectures.

DevOps Testing, Version 2020 25

© Association for Testing and Software Quality Assurance

 3. Testing - 245 mins
Keywords

API testing, application, behaviour-driven development, feature file, integration testing,
test-driven development

Learning Objectives for Testing

3.1 DevOps and Testing
LO-3.1.a (K1) Recall who is responsible for testing in the DevOps pipeline

3.2 Testing During Planning
LO-3.2.a (K1) Recall how acceptance criteria can guide testing

3.3 Testing During Coding and Building
LO-3.3.a (K1) Recall the role of unit tests in the DevOps pipeline
LO-3.3.b (K2) Explain the use of static analysis in the DevOps pipeline
LO-3.3.c (K1) Recall the order of testing and development in TDD
LO-3.3.d (K2) Explain the use of Arrange-Act-Assert and Red-Green-Refactor
LO-3.3.e (K3) Apply TDD in a given scenario (e.g., select the proper test for a

requirement)
LO-3.3.f (K3) Apply BDD in a given scenario (e.g., select the proper feature file for

a story)

3.4 Testing During Staging
LO-3.4.a (K2) Explain the types of testing that should occur during staging

3.5 Testing During Deployment
LO-3.5.a (K1) Recall the purpose of testing during deployment

3.6 Exploratory Testing
LO-3.6.a (K1) Recall the purpose of exploratory testing in the DevOps environment

3.7 Continuous Testing in the DevOps Pipeline
LO-3.7.a (K1) Recall how DevOps testing helps to reduce quality debt

 3.1. DevOps and Testing
DevOps changes the definition of the traditional tester. With continuous integration,
continuous delivery, and the overall goal of increased efficiency, DevOps requires

DevOps Testing, Version 2020 26

© Association for Testing and Software Quality Assurance

testers to take responsibility for quality across the entire development lifecycle, not
only during the traditional testing phase.

When following an Agile lifecycle, testing becomes an activity that the development
team (business analysts (BAs), developers, testers) owns together. Various activities
during development have an influence on testing, from requirements - where
collaboration and testing is done via Behavior-Driven Development (BDD) - to
customer involvement during acceptance testing. All of these change the scope and
pace of testing and involve the whole development team. Testing in a DevOps
environment takes this even further. DevOps pushes the development team to
actively engage with broader teams within their organization. This involves not only
the teams that develop the product, but also operations teams that release and
support the product.

Testing in DevOps spans the entire software development and delivery lifecycle.
Testers are no longer just focused on functional testing and feature verification. The
DevOps pipeline consists of various types of testing done throughout the different
stages. The way to approach testing in DevOps is to break down the pipeline into a
few parts and apply different types of testing in each part.

The following is a simple DevOps pipeline that is considered in this syllabus:
Plan ! Code ! Build ! Stage ! Deploy

This pipeline is sometimes expanded or modified as shown below to include testing
and monitoring steps:
Plan ! Code ! Build ! Test ! Release ! Deploy ! Operate ! Monitor
Plan ! Create ! Verify ! Package ! Release ! Configure ! Monitor ! Repeat

Regardless of the pipeline steps, testing must be fully integrated into the lifecycle. The
next sections discuss how this integration should occur in the simple pipeline.

 3.2. Testing During Planning
Testing during the planning stage includes gathering the requirements from the right
stakeholders, documenting those requirements accurately, and ensuring testability by
defining proper acceptance criteria. Requirements defects can range from ambiguous
to incomplete to incorrect. The time and effort invested in implementing incorrect or
poorly defined requirements is difficult to recover and costly for the project.

Reviewing requirements, either formally in a review meeting or informally as tests are
being defined, is a form of pre-CI/CD static testing. Static testing is testing without
executing any code and can be performed manually (reviews) or automated by use of
tools (static analyzers).

When the requirements are in the form of user stories, the definition and review of the
acceptance criteria help to define the story and the expectations from the

DevOps Testing, Version 2020 27

© Association for Testing and Software Quality Assurance

implementation of that story. Clear definition of the acceptance criteria eliminates the
disconnect between what the developer implements and what the user wants. By
collaborating to clearly define the acceptance criteria, the developer knows what to
develop, the tester knows what to test and what outcomes to expect, and the user
knows what they are getting in the final product.

 3.3. Testing During Coding and Building

When it comes to the “Create” step of the DevOps pipeline, the focus for testing
should be on static testing of the code (static analysis), unit testing and integration
testing. In each phase of code development, there must be a testing activity to ensure
that only high quality software moves to the next phase (such as moving from unit
testing to integration testing).

 3.3.1. Static Analysis of Code
During the “Code” and “Build” stages of the DevOps pipeline, static analyzers are
used for code reviews before integrating the code as part of a build.
Static analysis tools (often referred to as linters, sanitizers or static analyzers) are
used to perform static testing. They help improve the quality of code by removing
unnecessary fluff and performing automated checks. A few examples of checks that
they can perform include the following:

• Adherence to code style conventions and standards

• Inefficient use of resources, such as creating memory leaks by not freeing
memory after use

• Incorrect usage of Application Programming Interfaces (APIs)

• Common security vulnerabilities, such as those identified by the Open Web
Application Security Project (OWASP) or Common Weakness Enumeration
(CWE)

The tools will identify issues in the code and may recommend changes that should be
made to correct the problems. Developer action is to ensure that the tools’
recommendations are valid and perform any necessary corrective actions.

 3.3.2. Unit Testing
Unit tests are designed to verify functionality at the “unit” or smallest testable module
level. These tests are usually written by developers, sometimes as they develop the
code, and are executed each time the unit under test is being built. Developers are
responsible for ensuring that each unit of code has associated tests and may also be
responsible for achieving a defined level of code coverage (such as 85% statement
coverage). Unit tests must be maintained and updated as new functionality is added
to the unit.

Unit tests should be automated and are an essential foundation for all other types of
testing in the DevOps pipeline. Unit tests are simple tests; easy to write, and fast to

DevOps Testing, Version 2020 28

© Association for Testing and Software Quality Assurance

execute. When put together, they help ensure the module works as expected. Unit
testing primarily falls in the “Create” stage of the DevOps pipeline.

 3.3.3. Test-Driven Development (TDD)
A common practice for writing unit tests is Test-Driven Development (TDD) [Beck04].
TDD is a programming methodology that deliberately combines design, testing, and
coding in a rapid iterative process where a test-first approach is taken to develop a
product. The test, which verifies that the proper functionality is implemented, is written
and run before the code itself is written. When first written, the test will fail. Once the
code is written, the test is executed and the code is debugged until the test passes.
Once the test passes, the code and unit tests are refactored to improve efficiency and
maintainability. TDD helps developers think through the desired behavior of each unit
they are building, including inputs, outputs, and error conditions that may be
associated with that unit before production code is written.
TDD follows these steps for a new feature (user story):

1) The developer first creates a failing test

2) Test(s) is executed (the new test should fail since there is no code to test it
against)

3) Developer writes code to implement the feature

4) Test(s) is executed (repeat steps 3 and 4 until all tests pass)

5) Refactor code (if necessary)

There are many unit test frameworks available for different languages which can be
used to write unit tests using the TDD approach. These frameworks differ in their
APIs, approaches, and terminology, but all share some common elements. The most
popular approach, generally called xUnit, was pioneered by the SUnit framework for
Smalltalk, and later made popular by the JUnit framework for Java. xUnit has been
ported to or implemented in a large number of languages. Almost all frameworks
provide libraries and platforms that can accommodate features such as:

• Arrange-Act-Assert

• Red-Green-Refactor

Arrange-Act-Assert
Regardless of the language or unit test framework, a unit test typically follows this
three-step pattern:

1. Arrange – prepare the execution environment

2. Act – execute the operation being tested

3. Assert – check the result produced by the operation

The Arrange step may instantiate objects, initialize the application state, and inject
data as necessary. The Arrange step may not be needed if the environment is
already in place, but sometimes setting up the execution environment can be difficult

DevOps Testing, Version 2020 29

© Association for Testing and Software Quality Assurance

due to a reliance on complex dependencies in the production code. Service
virtualization may be used at this stage to substitute for services that are not yet
working. TDD encourages loose-coupling and minimizing dependencies, which
significantly contributes to simplifying the setup code.

The Act step usually consists of just one line of code that triggers the operation being
tested. It is mandatory.

The Assert step, which is also mandatory, performs the actual check of expected
outputs or other post-conditions. In most unit test frameworks, an error or exception
causes an assertion to fail. Many have specific types of exceptions that test for
specific kinds of failure. When no error occurs, the test passes.

To improve isolation, a single unit test should usually have a single assertion. It is
important to remember that a unit test is only valuable if it has accurate assertions that
are verified with each execution.

Red-Green-Refactor
The iterative process is the cornerstone of TDD. The purpose of each iteration is to
make a small, focused, carefully considered change to the program by writing the
tests for it first. Following a color-coded convention, the iterative cycle is often called
the Red-Green-Refactor cycle:

• Red – Write a failing test that describes an unimplemented expectation. Run
the test to ensure that it fails.

• Green – Write production code that satisfies only the expectation described
by the test and causes it to pass. Run all the relevant tests to ensure that they
all pass. If any fail, make the changes necessary to cause all the tests to
pass.

• Refactor – Improve the design and structure of both the production code and
the test code without changing functionality, while ensuring that all the
relevant tests continue to pass.

An Example
The following is an example used to demontrate developing a feature using TDD. The
example used here is a common interview question asked by employers and is called
the “FizzBuzz” problem.

Write a program that prints the numbers from 1 to the input number (up to 100). For
multiples of three print “Fizz” instead of the number and for the multiples of five print
“Buzz”. For numbers which are multiples of both three and five print “FizzBuzz. An
example input and output would be:

Input: 15
Output: 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz

DevOps Testing, Version 2020 30

© Association for Testing and Software Quality Assurance

This example only walks though one test case. A complete implementation of
FizzBuzz will require more test cases. It is highly encouraged that when you have
learned how to create the one test, you practice and write the complete test cases and
the complete FizzBuzz program using the TDD approach.

NOTE: This example uses pseudocode which will not run “as is” in a coding
environment. In order to implement this, the correct syntax for the chosen language
would have to be used. Psuedocode allows the developer to think about the logic
without having to worry about the syntax of a particular language.

The steps to developing the first feature of FizzBuzz are as follows:

1) Write a test that tests if a given number results in "Fizz". Note the code that results
in “Fizz” is not written yet.

 @Test
 function testMultipleOfThree:
 result = translateNumber(3);
 assert("Fizz", result);
 }

2) Run the above test and it should fail because the translateNumber() function has
not been written yet.

3) At this point it is necessary to implement the translateNumber() function.

 @production code
 function translateNumber(input):
 multipleOfThree = ((input % 3) == 0);
 multipleOfFive = ((input % 5) == 0);

 if (multipleOfThree && multipleOfFive) {
 return "FizzBuzz";
 }
 else if (multipleOfThree) {
 return "Fizz";
 }
 else if (multipleOfFive) {
 return "Buzz";
 }
 return String.valueOf(input);

4) Run the test again. You may have to do this multiple times while you are on step 3
and iterate over step 3 and 4 several times until the test passes.

5) Refactor the code in step 1 and 3 to make sure good coding standard and
programming practice is followed.

DevOps Testing, Version 2020 31

© Association for Testing and Software Quality Assurance

6) To complete this assignment, you would then need to put the code into a loop that
counted from 1 to the input number to provide the output given in the example.

 3.3.4. Behavior-Driven Development (BDD)
TDD works very well at the unit level, but the tests still reflect the developer's
perspective. In order to consider the goals of implementation, the perspectives of
other stakeholders must be considered and this is accomplished using the Behavior-
Driven Development (BDD) approach. Dan North, the founder of BDD explains BDD
as “using examples at multiple levels to create a shared understanding and surface
uncertainty to deliver software that matters.” [North19]

BDD extends TDD by writing test cases in a natural language that non-programmers
and domain experts can read. It uses the underlying concept of TDD, but instead of
thinking about writing a failed test, BDD starts with writing a feature. It then follows the
same process as TDD to write a test for the feature and code to pass the feature test.
In this way the feature is traced all the way up to a requirement.

Although it still has much in common with TDD from a technical perspective, BDD
intentionally uses different terminology to reflect its distinct goals and approach. For
example, TDD relies on unit tests to verify implementation details whereas BDD relies
on executable scenarios to verify behaviors. The low-level technical implementations
are often similar, but the formulations are very different.
BDD follows these steps:

1) Identify the business feature (often provided as a user story or epic)

2) Identify scenarios under the selected feature

3) Define steps for each scenario

4) Run feature and fail

5) Write code and implement the feature

6) Run feature and pass. Repeat steps 4 and 5 several times if necessary

7) Refactor code

BDD features are usually defined in a Given/When/Then format, which is a semi-
structured way of writing the test cases as shown in the following:

• Given – describes the state of the environment before the behavior is
triggered

• When – describes the action or actions that trigger the behavior

• Then – describes the expected result or results of the behavior

BDD scenarios can be coded and executed using common unit testing frameworks
available in most modern programming environments. When coded in this way, BDD
scenarios are essentially written as unit or integration tests and BDD may be applied

DevOps Testing, Version 2020 32

© Association for Testing and Software Quality Assurance

in much the same way as TDD for testing in the pipeline. After the feature file is
written to capture customer requirements properly, developers and testers start
implementing the necessary test cases and test suites. Like TDD frameworks, there
are many BDD test frameworks available. There are many TDD frameworks that
extend the functionality to write features and derive test cases from the features using
test runners such as jUnit, TestNG and Mocha.

An Example
The following example takes the FizzBuzz user story and implements it using the BDD
approach to create the feature file. The feature file is the scenario or set of scenarios
that will be used to test the feature itself, as described in the story.
Feature (user story): Play FizzBuzz
 As a Math game nerd
 I would like to play the math game Fizz Buzz
 so that I can learn how to calculate multiples

Scenario: When to Fizz
 Given I am a FizzBuzz player
 When I ask to FizzBuzz for 3
 Then I should get a Fizz

Scenario: When to Fizz Buzz FizzBuzz
 Given I am a FizzBuzz player
 When I ask to FizzBuzz for <value>
 Then I should get a <display>

Examples:
value display
1 1
2 2
3 Fizz
4 4
5 Buzz
6 6
7 7
8 8
9 Fizz
10 Buzz
11 11
12 Fizz
13 13
14 14
15 FizzBuzz

DevOps Testing, Version 2020 33

© Association for Testing and Software Quality Assurance

This feature file is then used by the BDD framework and each of the
Given/When/Then steps are converted to test steps. Code is written to create the test
cases for those steps in a very similar way to how test cases were created using TDD.

 3.3.5. Integration Testing
It is often the case that integration or API tests require custom data from different
sources, such as databases and/or third party APIs. For this reason, it is best to mock
(stub) or virtualize any external connections to free the testing from any downtime or
unavailable services. The more complex or unstable the integrating components, the
more important it is to have stubs or virtualized services in place to avoid significant
schedule issues.

 3.3.6. API Testing
API testing is an approach to testing that focuses on the interfaces between software
components rather than the user interface that sits on top of the APIs. API testing can
identify a variety of defects including functional issues where the right data is
processed incorrectly or where incorrect data is not detected and reported properly.
By testing at the API level rather than from the user interface level, testing can start
sooner and is less vulnerable to changes that may occur with the User Interface (UI).
It also allows a wider range of data to be tested and provides greater control for
testing error handling.

 3.4. Testing During Staging
A critical factor to remember for testing during "Staging” is that the environment in
which testing is to take place must be representative of the production environment.
Once there is a stable build, the build can be tested in a staging environment using
functional, non-functional, performance, security, and any other type of testing.
Functional testing is testing the implementation of the functional requirements for a
system, to ensure the system does “what” it is supposed to do. Non-functional testing
examines other quality attributes of the system to determine “how” the functionality is
supplied.

 3.4.1. Functional Testing
Functional testing is discussed in the Essentials of Software Testing syllabus [EoST].
In the DevOps pipeline, functional testing plays an important role at the “Staging”
phase, although some functional testing will have already occurred during earlier
testing. At this point, the entire system should be available for testing end-to-end.
Applying black-box testing techniques at this point in the testing will help to achieve
the desired coverage and ensure the implemented functionality meets the specified
requirements (e.g., acceptance criteria in stories).

DevOps Testing, Version 2020 34

© Association for Testing and Software Quality Assurance

 3.4.2. Performance Testing
During “Staging”, performance testing is conducted to identifying bottlenecks and any
performance issues within the system. During performance testing, scripts that
emulate real user behaviour are executed in quantity to place demands on the
software as would be seen under normal and peak load conditions. Performance
testing measures attributes such as response times, throughput rates, resource-
utilization, and identifies the application’s breaking point.
One of the main reasons that performance testing is often neglected is because
performance tests can take a long time to run and can be resource intensive. DevOps
and its pipeline allow the execution of performance tests early, as well as running
some performance tests in parallel with unit and integration tests. As functional tests
are executed in a staging environment, performance tests for the whole system can
be run in parallel. Accurate performance test results require the staging environment
to be representative of the production environment, including database sizes as well
as system configuration.

 3.4.3. Security Testing
There is a type of DevOps called DevSecOps, where security testing is no longer
considered an afterthought but is an integral part of the DevOps pipeline. Security
testing is specialized testing, and therefore a partnership with security experts is
needed to perform such types of testing in the pipeline. In DevSecOps, security tools
are identified and integrated into the DevOps toolchain and the results are made
visible to the whole team. This type of testing allows for early and continuous security
testing to help identify any security problems early.

 3.5. Testing During Deployment

During the “Deployment” phase, testing is conducted in the target environment to
verify that the deployment has completed correctly and that the software is fit for use
in that environment. Some of this testing is a re-execution of earlier functional testing,
but combinatorial testing may also be included. Combinatorial testing verifies that non-
interacting (independent) parameters or conditions are tested for unexpected
interactions. These may include environment conditions (O/S, browser-type, etc.). A
more complete discussion of combinatorial testing can be found in the EoST syllabus
[EoST].

Testing for deployment is often automated because the target system and the
software stability are known. Maintenance on the automation scripts should be
relatively low as compared to functionally testing a new build.

 3.6. Exploratory Testing
Throughout DevOps testing, exploratory testing is used. Exploratory testing combines
testing with learning about the software, and is dynamic in its approach, allowing the
tester to vary the next test based on what was found with the previous test. This

DevOps Testing, Version 2020 35

© Association for Testing and Software Quality Assurance

testing can be thought of as the tester “exploring” their way through the software and
following interesting paths.

Exploratory testing may be used as a formal technique, with a guiding charter and a
time-boxed session, or may be informal where users “try out” the software to see if it
is meeting their expectations. Although exploratory testing does not have any formal
coverage metrics and sometimes lacks reproducibility, it still yields valuable results
with little preparation or overhead. Lessons learned during these sessions can also
be used to improve and expand the automated tests.

 3.7. Continuous Testing in the DevOps Pipeline
The primary rule with testing in a DevOps environment is that the testing must be
continuous and the outcome from the testing determines if the software is ready to
move to the next phase. Defects are found early and addressed prior to the software
being re-introduced to the build. By attending to quality issues as soon as possible, a
DevOps environment avoids building a quality debt that becomes more and more
difficult to address as the solution becomes bigger and more people are involved.
Developing and testing in small increments allows the software to progress steadily
and for a firm and reliable base to be built.

DevOps Testing, Version 2020 36

© Association for Testing and Software Quality Assurance

 4. Automation – 120 mins.
Keywords
configuration management, DevOps toolchain, Infrastructure as Code

Learning Objectives for Automation

4.1 Automation in DevOps
LO-4.1.a (K2) Explain the purpose of test automation in DevOps

4.2 Test Automation
LO-4.2.a (K2) Explain the levels at which test automation should be implemented in

a DevOps environment

4.3 Infrastructure as Code
LO-4.3.a (K2) Explain how Infrastructure as Code works in a DevOps environment

4.4 Configuration Management
LO-4.4.a (K1) Recall the meaning of configuration management
LO-4.4.b (K2) Explain how configuration management is used when creating an

Infrastructure as Code
LO-4.4.c (K1) Recall the types of assets that are usually tracked with configuration

management

4.5 DevOps Toolchains
LO-4.5.a (K1) Recall the goal of DevOps and the use of toolchains
LO-4.5.b (K2) Summarize the tools that can be used in the DevOps toolchain

 4.1. Automation in DevOps
Test automation is a method used to conduct testing by using automated test scripts
rather than manual test cases. The test scripts are small software programs written in
a scripting or programming language that accomplish the goals of a test by controlling
the inputs to a software module, and verifying that the results match the expectations.
In its simplest form, a script mimics the user interaction with the System Under Test
(SUT) and is programmed to report any variances from the expected behavior.

Automation plays a significant role in DevOps and DevOps testing. The Agile
movement embraced automation of unit testing, acceptance testing, and continuous
integration. DevOps ties these with automation of the deployment process, eliminating
the boundary between developer-side automation and operation-side automation.

DevOps Testing, Version 2020 37

© Association for Testing and Software Quality Assurance

Continuous testing was explained earlier as one of the main activities of DevOps.
Continuous testing would not be possible without automation; it would not be an
efficient process if a large number of test cases were run manually in the DevOps
pipeline. Automation in the DevOps pipeline includes test automation, but also
extends to other areas.

 4.2. Test Automation

Test automation occurs at multiple levels in the DevOps pipeline. Automation begins
with automating the unit tests which are targeted at testing individual units or modules
of code. Unit testing helps to ensure that all code has associated tests and no issues
are introduced with each release of the code. As discussed in Section 3.3, this testing
can be approached in several ways, but to be truly automated, tools are required to
build and support the unit test framework that then supports the creation and
execution of these tests.

Test automation continues with the various checkpoints in the DevOps pipeline. Build
Acceptance Tests (BATs) or Build Verification Tests (BVTs) are commonly used to
determine that a build has the minimal required functionality. These tend to be positive
path tests and serve as a gate between the build and the deployment of the build for
further testing. The BVT is often used to determine if the build can be deployed into
the test environment in readiness for manual testing. The purpose of the test is to
ensure that the code being deployed for testing is not broken to the extent that further
testing will be blocked. Ensuring a good BVT set is always run will help to streamline
the entire process and ensure that testing can proceed effectively.

After the build is deployed into the test environment, a full suite of test automation can
be run against the released code. This suite of automated tests can be built through
any framework and should be triggered as the final step in the deployment process.
Building maintainable test automation is covered in other syllabi such as the EoST
syllabus [EoST]. It is important to remember that test automation in the DevOps
environment is critical to the success of the process. Any test automation must be
crafted to be maintainable, as there is an expectation that it will be actively used until
the software under test reaches end-of-life.

 4.3. Infrastructure as Code

Historically (and still in many organizations today), configuring an environment (test or
staging) to run software was a manual process. A person (possibly a BA or tester or
both) would identify the specifications for the environment and hand it to the Ops
team. Someone on the Ops team would purchase the necessary hardware, install the
operating system, prerequisite applications and libraries, then the product itself. Then
someone might tune the parameters of the server, define the settings of the product,
and create any automated jobs required to maintain the environment and hope that it
mimics the production environment. This process could take a long time, be prone to
errors, and was not easily repeatable.

DevOps Testing, Version 2020 38

© Association for Testing and Software Quality Assurance

In DevOps, CI/CD requires the automatic deployment of configuration changes to the
test and/or production environments but also expects that these target environments
are launched automatically as needed. CI/CD also requires an automated way to push
the latest build to these environments and, eventually, to the customer’s environment.
“Infrastructure as Code” includes the process and technology needed to provision and
manage environments (physical and/or virtual) through scripts.

Treating infrastructure as code is a key element of DevOps. It benefits both the
development and the operations teams. Infrastructure as Code allows operations
teams to get involved in the development process from the beginning, and developers
can gain a better understanding of the supporting infrastructure because they are
involved in specifying and understanding configurations for servers, networking,
storage, etc.

 4.4. Configuration Management

One of the main tenets of DevOps is to deliver software into the hands of the users in
an efficient, repeatable and reliable manner. Configuration management has a very
important role to play in this process to ensure the right software is delivered to the
right people at the right time.

Configuration management is the method by which functional and physical
characteristics of a configuration item are identified and documented. Configuration
management is also usually extended to controlling, documenting and tracking
changes to the item. This configuration item could be a module of code, a set of
parameters required to configure a system or a particular set of instructions for
hardware setup. Configuration management is critical for knowing which version of
each piece of a system is required, how it is created and where it is stored.

As part of the Infrastructure as Code implementation, configuration parameters for the
system are captured and stored in the code. The instructions to apply the parameters
are executed each time an environment is created, thus ensuring that the
configuration is consistent across each deployment. By centralizing the storage of
these parameters and tightly controlling any changes, the true configuration is kept in
a reusable form and environment configuration can occur quickly and reliably.

Version control is a part of configuration management. Each item tracked by
configuration management is given a version. This version is incremented every time
there is a change to the item. In this way it is easy to see what has changed from
version to version and rollback is possible if a new version was not implemented
correctly. For code, the version is incremented each time the code is released for a
build. An entire build of the software is also versioned, and the individual versions of
each module are recorded along with the version of the composite build. For
configuration parameters, such as how much disk space to allow, versioning is done
in the same way. Anytime something is changed in a particular parameter, the version

DevOps Testing, Version 2020 39

© Association for Testing and Software Quality Assurance

is updated. These individual parameters roll up together to make a version for the
entire configuration.

Examples of managed assets generated throughout the pipeline include source code,
build scripts, installation scripts, configuration files, infrastructure (software and
hardware configurations known as Infrastructure as Code), test cases and test scripts.
These assets are created and maintained by different people in the team and should
be accessible by the different teams at any time. All these assets needs to be version
controlled.

 4.5. DevOps Toolchains
The ultimate goal of DevOps is to streamline development through to delivery.
DevOps does not necessarily require tools and is not defined by its tools. However,
for most organizations, the tools play an important role in automating tasks and
ensuring processes run as efficiently as possible.

A DevOps toolchain is a combination of tools that help in development, integration,
testing, deployment, delivery, and management throughout the software development
lifecycle. The DevOps toolchain enables teams to move smoothly through the DevOps
pipeline. It should include tools from different categories such as:

• Project planning and management tools

• Requirements engineering tools

• Configuration management and provisioning tools

• Source code scanning (for quality and security) tools

• Build automation and continuous integration tools

• Functional and non-functional testing tools

• Deployment tools

• Release orchestration tools

• Application and infrastructure monitoring and performance tools

It is critical to design a DevOps toolchain that is adaptable to accommodate changes
in team preference, application architecture, quality processes, and other technology
shifts. In order to maintain an effective DevOps pipeline, DevOps teams must choose
the right tools to build their toolchain.

DevOps Testing, Version 2020 40

© Association for Testing and Software Quality Assurance

 5. Management – 160 mins.
Keywords
none

Learning Objectives for Management

5.1 Cultural Changes
LO-5.1.a (K2) Explain why a team may be averse to collaboration and how this can

be overcome
LO-5.1.b (K2) Explain the roles of specialists vs. generalists in a DevOps

implementation

5.2 Management Challenges
LO-5.2.a (K2) Summarize the challenges management faces in a DevOps

environment
LO-5.2.b (K3) For a given scenario, identify the key challenges and select the best

approach to deal successfully with the challenge

5.3 Barriers to DevOps Adoption
LO-5.3.a (K2) Summarize the barriers to the adoption of DevOps

5.4 Success Factors
LO-5.4.a (K2) Summarize the success factors in a DevOps implementation
LO-5.4.b (K1) Recall why goals must be clearly stated

 5.1. Cultural Changes
DevOps is not only a process change, it is also a cultural change. Traditional ways of
working, established responsibilities and roles, and even job satisfaction for
individuals all undergo a metamorphosis when DevOps is implemented. Each of these
must be understood and managed in order for the transformation and continued
operation to be successful.

 5.1.1. Eliminating Silos
Silos develop in organizations, whether by necessity or tradition. This involves a
concentration of expertise and a feeling of ownership within an area of the business.
Traditionally, developers develop, testers test and operators keep the system running
in production. Understanding all the tasks performed across these roles is critical for
the successful implementation of DevOps. Not having a full understanding, or worse,

DevOps Testing, Version 2020 41

© Association for Testing and Software Quality Assurance

assuming tasks are not needed, will inhibit the implementation and will also alienate
important stakeholders.

Successful elimination of silos first requires understanding the purposes and
responsibilities of each siloed area and sharing that understanding across
stakeholders. This will allow for an accurate assessment of what can be effectively
automated, which activities may be redundant, what must be kept and what can be
eliminated. For example, it may be determined that the development team writes a set
of deployment instructions, but the operating team writes their own instructions. This
is a possible area for automation, but also an opportunity to look at why the teams are
developing individual sets of instructions. Are they different? Automating from the
developers’ instructions may be the wrong thing to do. It will be more efficient for the
operators to be involved during development to understand how the software will be
deployed.

 5.1.2. Collaborative Work Environments
Just telling everyone to collaborate will not make it happen. Collaboration requires
sharing knowledge and expertise, which may be perceived by the team as losing their
importance to the organization. This is particularly true in an organization that has had
workforce reductions in the past. Knowledge is often equated to power and value.
Stakeholders may be resistant to collaboration, openly or covertly, because of fear. It
is critical in a DevOps environment to remove this fear factor and ensure that
everyone’s contribution is valued. The team should succeed as a whole, not as
individuals. This requires a large degree of trust and management reinforcement to
allow people to retain their feeling of importance and responsibility to the organization.

Management can help effect this change by clarifying the expectations for individuals
and rewarding collaboration rather than individual achievements. This will help to
reduce fear and will encourage the necessary behavioral changes for a successful
DevOps implementation.

 5.1.3. Specialist vs Generalist
The software industry tends to value specialists over generalists, both in recognition
and pay. Specialized skills are still needed in the DevOps environments, as well as
deep knowledge in particular areas (such as performance and security testing).
However, this has to be mixed with generalized knowledge of the entire process, from
product conception to deployment to support. This may also require adjustment of
reward systems in an organization where specialists have a higher level of
recognition.

Building generalists with some specialist knowledge is often a good compromise. In a
large organization, it may make sense to keep the specialist roles if the individuals
can be shared across teams. This can help an organization ensure they are using
consistent methods for automation and specialist testing across multiple product
teams. Ideally, teams meet frequently to share best practices and lessons learned, to
help build organizational knowledge and capability.

DevOps Testing, Version 2020 42

© Association for Testing and Software Quality Assurance

 5.2. Management Challenges
There are a number of challenges management faces in a DevOps environment,
particularly when converting to DevOps. The less agile the current lifecycle, the bigger
the adjustment into DevOps. The following list highlights some of the biggest
challenges that an organization is likely to face:

• Mindset changes – People can be uncomfortable and nervous with changing
from distinct roles to collaboration, specialist to generalist, and moving to
more dependence on automation. Management needs to ensure that people
understand these are opportunities to learn, develop skills and modernize the
approach to development through to deployment. It is important to remember
that individual job satisfaction may change and the rewards will be different. A
career software tester may get job satisfaction from finding and reporting
defects rather than assisting in the resolution. The mindset change from
“doing the job” to “releasing the product” can be difficult and must be
facilitated by management support and reinforcement.

• Reward systems – It is important to adequately and fairly reward people for
their long term contribution. Motivation is difficult to maintain and must be
frequently revisited to ensure the right behaviors are encouraged. In a
DevOps environment, rewards should focus on the goal of the team – which
is to release quality products efficiently. Individuals will be varied in technical
depth, but contribution to the team and the necessary skill mix must be
considered in the rewards. Not everyone needs to be able to automate
infrastructure deployment; someone with strong domain knowledge who can
identify critical business processes and provide test data may be just as
valuable to the team. It is important for the manager to not fall back into
rewarding specialist skills over generalist contributions because both are
needed in a successful DevOps environments.

• Who reports to whom and when – Reporting structures are often changed
when DevOps is implemented. It is important to remember that people need
to understand who they report to administratively. Reporting into a project
team and working out assignments within the team can work effectively with
motivated and self-managing individuals, but long term career planning,
compensation, training and administrative tasks still need to belong to a
management individual who has the knowledge and authority to provide the
management support for individuals to succeed.

• Training – To help minimize discomfort and to allow career growth, adequate
training must be provided so that individuals can improve their skills. In
DevOps there is a strong emphasis on automation for testing and
deployment. Training in these areas must be provided for individuals to
participate effectively in the team and feel that they are contributing.

• Managing budgets – Regardless of the methodology, budgets are a reality in
business. This includes budgets for tools, training, hiring, compensation and

DevOps Testing, Version 2020 43

© Association for Testing and Software Quality Assurance

environments. A test manager must understand the new cost areas,
particularly tooling and environment costs, to ensure that adequate budget is
allocated for a successful implementation of DevOps.

• Proper tooling – DevOps tools have been discussed in section 4.5, but there
are important management challenges around procuring and implementing
the proper tools. It is important to have valid technical input into proper tooling
and to understand the expected lifespan of the tools and the return on
investment (ROI), in order to make proper selections for the organization.
New tools appear on the market frequently, but these may be untrialled and
have limited support. Understanding the timespan for the use of the tool is
important to ensure a safe, reliable, and feature-rich option is selected. New
and shiny tools may be attractive and appear to have the best new
capabilities, but they may not be the best choice for the needs of the
organization.

 5.3. Barriers to DevOps Adoption
Despite all the benefits that DevOps can deliver, there are often significant barriers to
adoption. Some of the most common barriers include the following:

• Perceived loss of control – DevOps requires collaboration and sharing
information. To some, this is seen as a loss of control and loss of power. The
best way to combat this is to ensure that the benefits are clearly
demonstrated and the reward system encourages cross-team working and
sharing.

• Territorial battles – Ownership, particularly of certain areas of the business,
becomes less important and may actually be counter-productive to an
effective DevOps implementation. When territories are defined and protected,
knowledge is not shared and the implementation may be set up to fail. For
example, if the operations staff does not want to share information that the
team needs to automate deployments, the effort will be considerably more
difficult.

• Misunderstandings and misconceptions – As discussed in Chapter 1, there
are a number of misunderstandings, misconceptions and unrealistic
expectations that surround DevOps. This can result in schedules that cannot
be met, goals that are not feasible and general discouragement of the team.
Upper management may brand the attempt as a failure purely because the
expectations were never realistic.

To help avoid these barriers, it is vital to ensure that the stakeholders understand the
following:

• What is DevOps?

• What will it produce?

• How long will it take?

DevOps Testing, Version 2020 44

© Association for Testing and Software Quality Assurance

The stakeholders must be taken on the full journey with the implementation team to
help remove barriers and set realistic expectations.

 5.4. Success Factors
Establishing visible goals will allow all stakeholders to view progress and assess the
success of the effort. Of course, these goals must be realistic and clear or the
likelihood of failure increases. Some common measures of success include:

• Successful handoffs – A product is handed off smoothly from development to
testing to deployment phases of its lifecycle. Each handoff is measured for
quality and that measurement is reported and reviewed for possible areas of
improvement.

• Team engagement – In a successful DevOps implementation, the entire team
is engaged. They have their roles, understand their success measures and
work together to create the most efficient environment possible.

• Goal definition and fulfillment – Success can be measured only when clear
goals are defined. Satisfaction can be obtained when goals are met and
there is a clear achievement made by the team. This also means that when
goals are fulfilled, a celebration should be made and the achievement
acknowledged. Expecting success without celebrating it tends to demotivate
people. A strong team will expect success, but will also celebrate when it
occurs.

For a DevOps implementation to be considered successful, realistic goals must be
stated, tracked and achieved. Specific goals may vary between organizations,
particularly if DevOps is being implemented to correct previous failures, but it is
important to ensure that schedules, budgets, training and effort are all adequate for
achieving the stated goals.

DevOps Testing, Version 2020 45

© Association for Testing and Software Quality Assurance

 6. References
 6.1. ISO/IEC/IEEE Standards

• ISO/IEC/IEEE 12207:2017 Systems and Software Engineering - Software Life
Cycle Processes

• ISO/IEC/IEEE 15288 Systems and Software Engineering – System Life Cycle
Processes

 6.2. AT*SQA Syllabi
[EoST] Essentials of Software Testing, 2020. AT*SQA. www.atsqa.org.

 6.3. Trademarks
The following registered trademarks and service marks are used in this document:

• AT*SQA® is a registered trademark of the Advancement of Testing and
Software Quality Assurance

 6.4 References

[Beck04] Beck, Kent and Cynthia Andres. 2004. Extreme programming explained: embrace
change. Addison-Wesley Professional.

[Debois11] Debois, Patrick. 2011. Devops: A software revolution in the making. Cutter IT
Journal 24, 8 (2011), 3–5. Code: B4.

[Gregory19] Gregory, Janet and Lisa Crispin. 2019. Agile Testing Condensed: A Brief
Introduction. Library and Archives Canada. ISBN-10: 199922051X.

[Kim12] Kim, Gene. 2012. The Three Ways: The Principles Underpinning DevOps.
(2012). http://itrevolution.com/the-three- ways-principles- underpinning-devops/, accessed on
Jul 2018.

[North19] North, Dan (31 Dec 2019). "BDD is like TDD if…". faster organisations, faster
software. Dan North & Associates.

 6.5. Other Sources of Information

[Kim16] Kim, Gene, Patrick Debois, John Willis, and Jez Humble. 2016. The DevOps
Handbook: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press.

DevOps Testing, Version 2020 46

© Association for Testing and Software Quality Assurance

[North06] North, Dan. (March 2006). "Introducing BDD". Dan North. Retrieved 25 April 2019.

[Smart14] Smart, John Ferguson (2014). BDD in Action: Behavior-Driven Development for the
Whole Software Lifecycle. Manning Publications. ISBN 9781617291654.

