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 0. Introduction to this Syllabus 
 0.1. Purpose of this Document 

This syllabus forms the basis of the AT*SQA certification for Testing Essentials.  
AT*SQA is an International Standards Organization (ISO) compliant certification body 
for software testers. AT*SQA provides this syllabus as follows: 

1. To training providers - to produce courseware and determine appropriate 
teaching methods. 

2. To certification candidates - to prepare for the exam (as part of a training 
course or independently). 

3. To the international software and systems engineering community - to 
advance the profession of software and systems testing and as a basis for 
books and articles. 

 
AT*SQA may allow other entities to use this syllabus for other purposes, provided 
they seek and obtain prior written permission. 

 0.2 What is Essential? 
The Information Technology (IT) world changes almost continuously as new 
technologies and techniques are adopted. Software testers (whether by title or in 
practice) must adapt quickly and be able to leverage their skills to meet new 
challenges. However, the essential skills and knowledge remain the same, serving as 
core understanding to which new information can be added.  For the sake of 
readability, the term “software tester” will be used to refer to anyone who is testing 
software, regardless of their formal role. 
 
This syllabus focuses on the essential areas of software testing that are required, 
regardless of the technology, lifecycle or tools in use. Some projects may use more or 
less of these skill areas, but all software testers need to understand and master this 
core skill set. 
 
As the name indicates, this syllabus covers the “essentials”. This syllabus should be 
considered a springboard for additional certifications and knowledge areas. As a part 
of AT*SQA’s ISO compliant offerings, the certification must be kept current with 
additional learning completed within the defined timespan. For more details, see 
AT*SQA’s website. This helps software testers to continue to expand their knowledge 
and marketability and acknowledges the very real need for continuing education in the 
software testing industry. 
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 0.3 Syllabus Structure 
This syllabus has been constructed to be tool and methodology agnostic. In places 
where different approaches are needed based on different lifecycles, those areas are 
highlighted with appropriate recommendations for tailoring the approach. 
 
The intended target audience for this syllabus is anyone conducting software testing, 
whether or not they have the title of software tester. This includes Scrum team 
members, developers, Business Analysts (BAs), software specialists and anyone 
interested in learning the important aspects of software testing. 
 
This syllabus is intended to be read in full, but if the reader is interested only in a 
specific area, each area can be read independently. It is recommended that the Test 
Approach and Testing Techniques sections (Sections 2 and 3, respectively) are 
considered compulsory reading, as these are generally applicable to any of the 
specialist areas of testing and provide a good background to general testing practices. 

 0.4 Examinable Learning Objectives 
Each chapter notes the time that should be invested in learning and practicing the 
concepts discussed in that chapter.  This information should be used as a guideline 
when creating training materials or for an individual conducting self-study. 
 
All identified key terms are examinable, either individually or by use within an exam 
question. Full definitions for the key terms can be found in the AT*SQA glossary (see 
www.atsqa.org).  
 
The Learning Objectives for each chapter are shown at the beginning of the chapter 
and are used to create the examination for achieving the Testing Essentials 
Certification. Learning objectives are allocated to a Cognitive level of knowledge (K-
Level).  A K-level, or Cognitive level, is used to classify learning objectives according 
to the revised taxonomy from Bloom [Anderson00]. AT*SQA uses this taxonomy to 
design all examinations. 
 
This syllabus considers four different K-levels (K1 to K4) as noted for each Learning 
Objective (LO): 
 
K-
Level 

Keyword Description 

1 Remember The candidate should remember or recognize a term or a 
concept. 

2 Understand The candidate should select an explanation for a 
statement related to the question topic. 

3 Apply The candidate should select the correct application of a 
concept or technique and apply it to a given context. 
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4 Analyze The candidate can separate information related to a 
procedure or technique into its constituent parts for better 
understanding and can distinguish between facts and 
inferences. 

 
In general, all parts of this syllabus are examinable at a K1 level. That is, the 
candidate will recognize, remember and recall a term or concept. Other specific 
learning objectives are shown at the beginning of the pertinent chapter. 
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 1.  Introduction to Software Testing  
– 60 mins. 
Keywords  
requirements, test case, test condition, test plan, test strategy  

Learning Objectives for Introduction to Software Testing  

1.1  What is Software Testing 
 LO-1.1.a (K2) Summarize the various forms of requirements 
 LO-1.1.b (K1) Recall the meaning of “fit for purpose” 

 

1.2  A Brief History 
 LO-1.2.a (K1) Recall the difference between a test engineer and a 

test analyst 
 

1.3  Structured Testing 
 LO-1.3.a (K2) Explain the purpose of the documents used in a structured testing 

environment 
 

1.4  The Role of a Tester 
 LO-1.4.a (K1)  Recall who can be a software tester 

 

 1.1. What is Software Testing 
Software testing has variable meanings. The term has evolved as new software 
development lifecycle (SDLC) models have been introduced. Regardless of the 
changes to the exact definition, software testing is an activity, or set of activities, that 
are conducted to evaluate software to determine the following: 

• Have the requirements been met? 

• Is the software “fit for purpose”? 

• Has the risk been reduced enough? 

• Have important defects been identified and addressed? 
Each of these questions tends to elicit more questions.   

 1.1.1. Requirements 
Software requirements come in many forms including: 

• Formal requirements documents prepared by Business Analysts (BAs) 

• Technical requirements documents, such as functional specifications, design 
documents, and interface design documents 
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• Higher level documents, such as use cases which describe how an expected 
user would accomplish tasks or goals by using the software 

• SDLC unique documents, such as user stories in the Agile lifecycle model 

• Very informal diagrams on white boards and results from workshops 

• Word-of-mouth and drawings in a highly collaborative environment (where the 
team is all working together, all the time) 

The ability to verify that the software meets the requirements is dependent on the 
clarity of the requirements. If a requirement is clear and defines exactly what the 
software is supposed to do, the verification is straightforward. Where the requirements 
are vague or missing, the tester must be able to apply their own knowledge of the 
users and domain in order to determine if the requirements have been met. 

 1.1.2. Fit for Purpose 
All software is designed to fulfill a purpose, but just accomplishing a task is not 
enough. In order for it to be “fit for purpose”, the software must work for the people 
who will be using it, in the environment in which they will be using it. For example, a 
mobile application that allows people to deposit checks by taking a picture of the 
check may work great in the lab with specific lighting and backgrounds, but may fail 
when used in a user’s home. In this case, the requirement may be met (it works 
functionally), but it is not “fit for purpose” because it is not usable in the target 
environment. 

 1.1.3. Risk 
Because there is rarely enough time to perform all the testing possible, risk 
prioritization is used to limit the testing to what is needed to mitigate risk to an 
acceptable level.  Determining what is acceptable may be a matter of opinion, which is 
why risk analysis requires cross-functional input to ensure each risk is being 
considered and rated accurately. With the above example of the check deposit, if the 
decision is that a low-lighting environment is highly unlikely, that would reduce the 
rating of that risk. On the other hand, if it is determined that this is highly likely to occur 
and that the user will be unable to deposit their check, the risk would be considered as 
very high and additional work would be required to adequately mitigate that risk. Risk 
is discussed further in Section 2.6. 

 1.1.4.  Finding Defects 
One of the purposes of testing is to find and fix defects before the software is released 
to the users. Defects, also called bugs, are flaws in the software that cause it to 
function incorrectly or cause the user to use it incorrectly. Clear requirements help in 
determining what is a defect and what is not. The less clear the requirements, the 
more discussion will be needed to determine if an anomaly is actually a defect or if it 
is just an undocumented feature of the software.  Keeping the user’s view in mind 
when testing the software helps the tester to better determine what a user would 
consider to be a defect. For example, an incorrect text prompt “enter suer name” is 
clearly a defect. What if the user name always has to be between 5-15 characters but 
the user is not told that?  Is that a defect? Defect identification and proper recording is 
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an important task for a tester. Defects that are not recorded accurately are difficult, if 
not impossible, to fix. 

 1.2. A Brief History 
Software testing has existed for as long as there has been software. The formality, 
emphasis, funding and respect for software testing has varied over the years, but it 
will always be needed.  Good practices that were popular in the 1970’s still have merit 
today, just as new practices developed since that time also have merit. It is important 
to remember that there is a wealth of knowledge in software testing. Environments, 
languages, devices and approaches may vary, but understanding the essentials of 
software testing will allow the tester to work in, and adapt to, any environment. 
 
In software testing, there tends to be a differentiation between technical testers (i.e., 
test engineers) and non-technical testers (i.e., test analysts). Technical testers are 
expected to have the skills such as those needed to write test automation, conduct 
performance tests or participate in code/design reviews. Test analysts are generally 
expected to conduct the functional testing (i.e., does the software meet the 
requirements), as well as to consider usability (i.e., will the target user be able to use 
the software effectively, efficiently, and enjoy using it) and domain/environment 
attributes of the software. In some cases, test analysts are also expected to work with 
end-users for user acceptance testing (UAT) and to help validate that the software will 
work in the target environment for target users who are accomplishing the target 
tasks. 
 
Like software development, software testing will continue to evolve. Mastering the 
essentials of software testing will help make a tester resilient and able to adapt to 
changes. 

 1.3. Structured Testing 
Highly-structured testing, such as that required by some sequential lifecycle models 
(discussed in Section 2.3), generally has a higher level of documentation. Formal test 
strategies, well-defined test plans, explicit test cases, controlled test data and test 
environments, and a well-managed defect lifecycle are all artifacts of a highly-
structured approach to testing.   
 
While the documents may vary depending on the environment, the following are 
normally found in a structured testing environment: 

• Test strategy – a test strategy is an organization-wide document that defines 
how testing will be conducted across all comparable types of projects in the 
organization.   

• Test plan – a test plan is the implementation of the test strategy for a particular 
project and includes the approach to be used for testing, a definition of the 
scope of testing for the project, the testing schedule, the resource 
requirements, a description of tools and their usage, a definition of 



 
 

 
 

Testing Essentials, Version 2020  11 

© Association for Testing and Software Quality Assurance 

 

environments and any other information required to describe the testing 
process, and stakeholder agreement for a project.   

• Test conditions – a test condition is a capability or characteristic of the software 
that needs to be tested. This could be something functional, such as the ability 
to enter a user name; or something non-functional, such as the expected 
response time of the application under a defined load. 

• Test case – a test case is the information required for a tester to test a test 
condition. This can include the pre-conditions of the system (e.g.,  user does 
not exist), the post-conditions after the test (e.g., the user has been created) 
and the inputs and actions required to accomplish the goal of the test.    

• Defect reports – each defect should be captured in a report that is then 
processed through a workflow to record all the actions taken to resolve the 
issue. A defect report normally records information, such as the environment 
used, steps to reproduce, priority/severity, expected/actual results and other 
descriptive information. 

More information about the documentation used in testing can be found in Section 
2.5. Depending on the environment, more or less of these documents will be prepared 
and maintained as part of the testing process. 

 1.4. The Role of a Tester 
The role of a “tester” can vary with different organizations and different lifecycle 
models. While software testing is a profession, others may periodically carry the title 
of a software tester. For example, in an Agile lifecycle model, everyone on the team 
has testing responsibilities and may be considered to be a tester. Business users may 
become testers during UAT. Software developers are testers when they are testing 
their own or another developer’s code.   
 
Regardless of the name of the role, testers are responsible for gathering information 
that can be used to assess the quality of the software. This information includes tests 
that have been run and have met their goals (passed), tests that have not met their 
goals (failed), defects found, risks mitigated, test coverage (in terms of tests executed 
vs. not executed, code covered vs. not covered, risks mitigated vs. not mitigated, or 
requirements tested vs. not tested) and other information needed by the stakeholders. 
 
All testers need to be familiar with the essential areas of software testing. 
Specialization in these areas may require further study, but a general familiarity is 
necessary to understand what can and should be tested for any software product. 
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 2. Test Approaches – 145 mins. 
Keywords  
acceptance testing, Agile, alpha testing, beta testing, configuration management 
system, debugger, drivers, end-to-end testing, integration testing, interoperability 
testing, iterative model, Kanban, operational acceptance testing, product owner, 
requirements traceability matrix, risk, risk-based testing, Scrum, Scrum Master, 
sequential model, software development lifecycle, sprint, stubs, system integration 
testing, system testing, test levels, unit testing, use cases, user acceptance testing, 
user stories, V-model, waterfall 

Learning Objectives for Test Approach  

2.1  Introduction 
LO-2.1.a (K1) Recall factors to consider when selecting a test approach 

 

2.2  Testing Levels 
LO-2.2.a (K1) Recall the purpose of system integration tests 
LO-2.2.b (K2) Summarize the activities that take place during each of the four 

levels of testing 
 

2.3  Software Development Lifecycle 
LO-2.3.a (K2) Compare the advantages and disadvantages of following either 

a sequential or iterative lifecycle 
 

2.4 Product Type 
LO-2.4.a (K2) Describe how different product types affect the test approach to 

be used  
 

2.5  Documentation Requirements and Availability 
LO-2.5.a (K2) Describe how different documentation requirements can drive 

the selection of a test approach  

 
2.6  Risk 

LO-2.6.a (K2) Explain how risk affects the choice of a test approach 
 

2.7  Schedule and Budget 
LO-2.7.a (K2) Describe how a project's schedule and budget requirements 

affect the selection of a test approach 
 

2.8  Maturity and Ability of the Team 
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LO-2.8.a (K1) Recall how the attributes of the team members can affect the 
choice of test approach 

 

 2.1. Introduction 
A test approach defines how the testing for a project will be accomplished. The 
approach may be formally defined in the test plan or may be informally agreed upon 
by the project team. Approaches can include methods for prioritization (e.g., risk-
based) or may specify that certain requirements be met (e.g., regulatory or 
certification requirements). Test approaches generally reflect the organization’s test 
strategy and are used to ensure that the methods and goals of testing are aligned with 
the goals of the project team and the stakeholders. 
 
Selecting the proper test approach for a project depends on a number of factors, 
including: 

• Testing levels 

• Software development lifecycle 

• Product type 

• Documentation requirements and availability 

• Risk 

• Schedule and budget 

• Maturity and ability of the team 
 
All of these factors must be considered when determining the best test approach for 
any project. Realistically, any one of these individual factors can skew the decision. 
For example, if the project is a safety-critical project requiring approval by a regulatory 
commission of some type, then documentation requirements and risk management 
will become the most important factors in the test approach decision. 
 
This section explores each of these factors and how they help to determine the 
optimal test approach for a project.   

 2.2. Testing Levels 
Regardless of how the software is developed and which lifecycle model is followed, 
there are four distinct levels of testing. These levels may be combined in some cases, 
but it is important to follow the level approach to improve the efficiency of testing and 
reduce the time required for troubleshooting and testing for possible regressions (i.e., 
regression testing). Adequate testing at each level is more efficient than a big bang 
approach in which testing is only done once at the end of development.   
 
While testing is generally assigned to particular team members, such as developers or 
testers, testing can also be shared across team members, with the most suitable team 
member doing the testing at a given point in time. The following list of levels is a 
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categorization of the types of testing that need to occur and the logical progression of 
testing:   

• Unit testing 

• Integration testing 

• System (end-to-end) testing 

• Acceptance testing 
 
In some cases, system integration testing may also be required. This happens when 
multiple systems - that are comprised of complete sets of software that provide 
functionality independently - must also interface with each other. In this case, testing 
is needed to ensure that the independent systems integrate properly. This type of 
testing usually occurs after system testing is completed on each of the independent 
systems. 

 2.2.1. Unit Testing  
Developers conduct unit testing to ensure that their units (or modules) of code are 
working according to their requirements and design.  Each unit, or set of testable 
units, is tested either in an automated fashion using a static analysis tool, using a unit 
test framework such as JUnit, or manually using a debugger to step through a 
particular test case. The purpose of unit testing is to ensure that the individual units of 
code function as intended. Performance testing and cybersecurity testing of individual, 
relevant units may also be conducted during unit testing. Unit testing generally applies 
structure-based (white-box) testing. 
 
Test-driven development (TDD, also sometimes called test-first development) is a 
form of unit testing where the test is written before the actual code is written. In this 
case, the automated test will execute and fail, until the entire testable unit is 
developed. When the entire unit is available and free of detected defects, the test 
code will pass. TDD was introduced in Extreme Programming (XP) and is commonly 
used in Agile environments. It can also be used to develop unit test cases when using 
other development methodologies such as sequential or incremental, as well as in 
environments where safety-critical code is being produced and must always adhere to 
the highest quality standards. 

 2.2.2. Integration Testing 
Developers and/or testers conduct integration testing to ensure that the tested units 
work together.  Integration testing focuses on the communication between units at the 
points of interaction. For units that are not ready to be integrated yet, drivers and 
stubs may be used as placeholders. Drivers are used to call the testable modules or 
units of code.  Stubs are used to act like a module or unit of code and generally return 
a positive response. On a larger scale, service virtualization (SV) can be used to 
simulate entire services or parts thereof. SV is commonly used when services needed 
for integration are not yet available or cannot be tested (such as a banking backend 
interface). 
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Integration testing can be done in a top down fashion (where the drivers are written 
first and can be used to call the units as they become ready for testing), or a bottom 
up fashion (where the individual units are written and tested via a driver that is written 
specifically for testing purposes). The term continuous integration is used to define a 
configuration management system that has test automation built in. When a new unit 
is checked in, it can be exercised via test automation with other units that have also 
been checked in. Continuous integration is often used after a significant set of code 
has been developed to avoid spending too much time developing drivers and stubs to 
simulate code that has not yet been integrated. 
 
Integration testing is primarily functional, but can also include performance testing and 
cybersecurity testing of the integrated part of the system. Integration testing is often 
informal, with little documentation or formal test scripting.   

 2.2.3. System Testing 
System testing, or end-to-end testing, is conducted to verify that the software as a 
whole is working per the defined requirements (specifications, user stories, design 
documents). Testers or quality assurance (QA) analysts usually conduct this testing in 
an environment that is configured similarly to the production environment and uses 
data similar to what would be found in the production system. The primary goal of this 
testing is to ensure that the stated requirements have been met and test coverage is 
often tracked with a requirements traceability matrix (RTM). Test management and/or 
requirements management tools are often used to store test cases, record test 
execution and to create the traceability matrix - mapping requirements to test cases. 
Documented test cases may be used to guide the testing, although lighter methods 
such as checklist-guided or exploratory testing may also be used.   
 
System testing is primarily functional, but should also include performance testing, 
cybersecurity testing, interoperability testing and usability testing. Depending on the 
product being tested, system testing may be extended to cover all components of the 
system, including software, hardware, data, and procedures. In some cases, system 
testing is the first opportunity to conduct these other types of testing in a realistic 
environment. 
 
End-to-end testing is a type of system testing that exercises transactional flows 
through an entire system or set of systems. This testing often simulates real world 
usage and is guided by process flows and use cases. 

 2.2.4. Acceptance Testing 
The goal of acceptance testing is for the targeted user or operator to “accept” the 
software as working to meet their requirements for the software. Different types of 
users can conduct acceptance testing in different environments. The following is a list 
of the most common types of acceptance testing: 

• User Acceptance Testing (UAT) – testing conducted by system users or proxies 
(e.g., business analysts) for those users in order to determine if the software is 
fit for purpose. This is normally performed using documented test cases and 
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exploratory testing. The users of the system exercise the system as they would 
during normal daily use, including cyclical functions such as end of month and 
end of year. Business analysts will sometimes guide this testing for the users. 
The goal is for the users to “accept” the system based on their evaluation of 
whether the acceptance criteria have been met. The users bring a unique 
viewpoint that may be missed by testers who are unfamiliar with all aspects of 
system usage and the real-world conditions that users encounter. 

• Operational Acceptance Testing (OAT) – testing conducted by system 
operators to determine if the software will work in the production environment 
when fully deployed. Ideally, this testing is conducted in a staging environment 
that is an exact replica of production; where that is not possible, the 
environment should be as close as possible to production. System operators 
use this testing to ensure that the software will work properly with load 
balancers, firewalls and other production equipment, as well as with production 
processes such as backups. Testing rollout and rollback plans are often part of 
this as well. 

• Alpha Testing – testing conducted at the development site, but not by the 
developers or testers who have been working on the project. This testing is 
sometimes called “internal acceptance testing”, meaning that the testing is 
conducted within the organization, but is not exposed to external users. 
Training groups and support groups within the organization are often used for 
this type of testing. 

• Beta Testing – testing conducted at a customer (or potential customer) site 
using the customer’s data and network environment. This testing is usually 
conducted by the customer themselves, although they may have some 
assistance from the testers or developers to ensure the test coverage is 
adequate. The goal of this testing is to determine if the software is fit for 
purpose in the real production environment without fully releasing it to 
everyone.  Feedback from beta testing may result in further internal 
development and/or testing prior to the full production release. 

 2.3. Software Development Lifecycles 

 2.3.1. Sequential Models 
Sequential lifecycle models include waterfall and V-model. These are considered to 
be sequential models because the steps of the development process are sequential:  
requirements, design, code, test, and release. Sequential models require a fully 
developed set of requirements before design and coding starts. It should be noted, 
however, that in some versions of the V-model, verification occurs at each major 
phase. For example, requirements reviews may be performed during requirements 
development.  Unit testing is usually conducted as the software is being developed. 
Integration testing, system testing and acceptance testing usually occur after 
development is completed.   
 
In a pure waterfall model, testers usually are not engaged in the SDLC until the 
software is completely built and the developers have completed their unit testing. In a 
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pure V-model, testers are engaged early to review requirements, design documents 
and to prepare the testware (e.g., test plan, test cases) prior to receiving the code to 
test. 
 
The advantages of sequential models include: 

• The requirements are considered to be stable throughout the project 

• Test automation can start at the beginning of testing because the software will 
not change 

• In a waterfall model, the test team is only involved from the moment the code is 
complete, freeing them for other tasks or other projects 

• In the V-model, the test team is involved with reviewing all the documents 
produced by the business analysts and developers (requirements, high-level 
and low-level design documents) and can provide input on each of these, thus 
engaging with the project sooner and having input that can influence the quality 
of the product 

• In the V-model, there is generally more time available to apply structured 
testing (e.g., prepare the test documentation, including test cases) 

 
The disadvantages of these models include the following: 

• Because no code is seen by the testers until all the code is developed, there is 
little opportunity to influence the usability and user experience 

• The testers need time to prepare the test documentation (e.g., test cases) after 
they have received the code and before they can start testing 

• The users’ requirements may change while development is occurring, resulting 
in a product being created that is no longer wanted 

• If the development time takes longer than expected and release dates are not 
moved, the time for testing is compressed 

 
The sequential lifecycle models, in particular the V-model, are still used in the industry 
and are successful in the proper environments. These models are particularly 
common where thorough documentation is required (e.g., for safety-critical projects) 
and where the requirements are not likely to change over the life of the project. 

 2.3.2. Iterative Models  
Iterative models include basic iterative and Agile. Agile is usually implemented via one 
of the common process frameworks, such as Scrum or Kanban. Iterative development 
simply means that the software is developed in small sets, with each iteration 
producing a piece of software functionality. Iterations vary from 2 – 4 weeks and each 
iteration includes analysis, design, implementation and testing.   
 
In an Agile project using the Scrum framework, iterations are called sprints. Each 
sprint has a planning session which is used to determine which user stories (i.e., small 
bits of requirements) will be implemented during the sprint. The self-organizing cross-
functional team determines what they can commit to completing within the sprint. A 
Scrum Master provides guidance and coaching for the team and the product owner, 
represents the business, and defines and refines the requirements.   
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In a Kanban project, the emphasis is on continual delivery and managing the workflow 
to eliminate bottlenecks in the process. While not strictly an Agile framework, it is 
frequently used in Agile environments to manage the workflow by use of tools such as 
Kanban boards.   
 
The advantages of the iterative models include the following: 

• The team is able to react quickly to changing requirements 

• A demonstrable product, or piece thereof, is available for the customer to see 
and use 

• Early feedback can change the direction of the team and the product to better 
suit the needs of the customer 

• Schedule constraints are handled by implementing less functionality 
• Testers are more engaged in the overall process and tend to form closer 

relationships with the developers 
 
The disadvantages of the iterative models include the following: 

• Too frequent changes in direction can result in little or no progress 

• Lack of detailed documentation means reliance on communication, which may 
be difficult for a team that is dispersed 

• If cultural issues in an organization are significant, people may not be able to 
work effectively as a cross-functional team 

• Lack of detailed documentation may make the model infeasible for some 
products, particularly those with regulatory or safety-critical aspects 

• Test automation is mandatory to avoid manual testing time becoming 
increasingly long due to the larger scope of regression testing as iterations 
progress 

• Rigid adherence to the process can result in a significant learning curve for a 
team 

 
Iterative models have been around for many years, long before Agile was defined. 
These models have worked successfully across a wide variety of software projects 
and continue to be the most dominant models in the industry. 

 2.3.3. Hybrid Models 
While there are defined software development lifecycle (SDLC) models, it is important 
to remember that most organizations do not follow a “pure” model. Most organizations 
follow hybrid models that take bits and pieces from various models to create a best-fit 
model for the organization. Sometimes this is done wisely, picking the most efficient 
and practical model; but more often than not, this is done without considering what is 
being left out. That is where the danger lies.   
 
SDLCs have built-in safeguards to ensure that necessary steps are completed. 
Picking and choosing the “best” parts from different SDLCs is likely to result in 
weaknesses being exposed. For example, if an organization were to pick an Agile 
SDLC, but also chooses to work without defining acceptance criteria for stories, there 
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is a gap created in the validation aspects of the project. Similarly, if an organization 
were to pick a waterfall model, but decides to use stories to document the 
requirements, the concept of completed and well-defined requirements before the 
start of coding is violated. This may result in a product that is incompletely developed 
or in a product that necessarily must change as development progresses. This results 
in a longer development time and a compression of the testing schedule. 
 
When selecting a model, it is important to understand the project, the team, the 
product and the goals of the organization in order to select the best fit. More 
information on software lifecycle models can be found in ISO/IEC/IEEE 12207:2017 
and ISO/IEC/IEEE 15288. 

 2.4. Product Type 
Another consideration when determining the testing approach is the type of product 
that is being developed. A mobile application that is expected to last for six months 
requires a different approach than software that will control the navigation of a fleet of 
aircraft. In general, the longer the software will stay in production and the more critical 
the functionality of the software, the more formal the approach. A formal approach 
may dictate the lifecycle model, the level of documentation required and the test 
techniques to be used. Similarly, a short-lived application that is used to provide a 
game interface for idle travelers may be best served by a lightweight approach with an 
Agile lifecycle, minimal documentation and only exploratory or acceptance testing.   
 
When deciding how the product type may influence the test approach, the following 
factors should be considered: 

• Length of time the software will be used in production before replacement 

• Any safety-critical aspects of the software 

• Any regulatory requirements that must be met 

• Competition and market opportunities (e.g., bigger feature set, better usability) 

• Requirements for security and performance 

• The testers’ understanding of the product and domain, and the degree of 
changes to either the product or related items 

 
The best test approach for a product is somewhere on the spectrum from formal and 
fully documented to informal and lightweight.   

 2.5. Documentation Requirements and Availability 

In software testing, documentation has two general categories:  documents required 
to properly test the product, and documents required to demonstrate the testing has 
been completed. The test approach is heavily influenced by the availability of 
documentation and the requirement to provide documentation from the test process. If 
there is little or no documentation regarding what the software is supposed to do or 
how it will do it, the tester is forced into an approach that includes some amount of 
exploring the software to understand what it is doing. Creating detailed test cases may 
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not be worthwhile since the testing will be occurring while the research is being 
conducted to document the test cases.   
 
On the other hand, if test case documentation and test execution evidence is required 
by the project, then that documentation will have to be created, maintained and 
updated as needed. If there are plans to keep a product in production for several 
years and updates are likely, there is a greater need for reusable test artifacts, 
particularly test cases. The requirements for a test management system are 
influenced by the need to track documentation and test evidence during testing. 
 
The types of documentation that can be used as input for the testing effort include: 

• Requirements documents 

• Specifications (e.g., technical/architectural, user and database specifications) 

• User stories 

• Business cases 

• Use cases 

• Design documents 
• Screen mockups and wireframes 

• Sample reports 

• Existing test cases 

• Checklists 

• Defect reports 

• Requirements traceability matrix 

• Existing user and operational guides 
 
The types of documentation that can be provided as evidence of test execution 
include the following: 

• Test cases with pass/fail recorded at the test case and step level 

• Screen shots 

• Defect reports 

• Coverage reports 

• Test automation logs and reports 
 

Projects have differing documentation requirements. It is important to select a test 
management and document management system that will help to track, version and 
report the documentation that is needed across the variety of projects, that will also be 
supported by the tools. It is important to remember that documentation has no value 
unless someone will use it. It is good practice to always aim for the lightest suitable 
documentation for a project; consider re-use, consider true needs and consider other 
ways of communication to ensure that the documents produced meet the needs of the 
project without burdening the team. 
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 2.6. Risk 
In testing, risk is defined as an event or condition that could occur and would result in 
a negative outcome. If the event or condition actually occurs, it is called an issue 
[PMBOK]. While a risk has somewhere between a 1% and 99% probability of 
occurring, an issue has 100% probability of occurring because it has actually 
occurred.   
 
Risk is a significant factor in determining the best test approach. Higher risk projects 
generally require more formal approaches with more complete documentation. Lower 
risk projects can work with a lighter approach and may require little or no 
documentation. Using risk prioritization, commonly called risk-based testing, on every 
project is a strong approach and helps to prioritize and define all testing activities, 
including the following: 

• Formality of the test approach 

• Test case preparation and documentation level 

• Test execution 

• Defect prioritization 

• Defect re-testing 

• Regression testing 

• Timing of other testing such as security and performance 

• Test automation requirements 

• Depth and breadth of testing 
 
Identifying risk is best done with a cross-functional group who can clearly review the 
project, its intentions, and identify the risks that are inherent in the project and the 
software being developed. Once the risks have been identified, they can each be 
assessed in terms of likelihood of occurrence and impact to the customer or system if 
they occur. The resulting intersection of likelihood and impact is often expressed as 
the risk level. For example, high likelihood and high impact would result in a risk level 
of “High” or “Very High”. Another way to express the risk level is by numeric scores on 
a scale of 1 – 10. This assessment helps to indicate the mitigation required and can 
guide the types, extent and priorities of testing. User training may be used to mitigate 
some risks whereas other risks may require extensive testing in a production-like 
environment.   
 
Assessing and ranking all identified risks allows the team to determine the best 
approaches for mitigation and also helps to set the testing schedule. For example, a 
high likelihood and high impact risk that can be best mitigated by testing will usually 
require more time in the testing schedule than a risk with low likelihood and low 
impact. It should be noted that there is a degree of error in assessing risk as it is 
essentially a qualitative exercise. Contingency plans are helpful when low risks may 
become high risks. 
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 2.7. Schedule and Budget 
Any testing approach must consider the schedule and budget for the project. It is 
unusual to find a project for which there is not a pre-defined schedule and/or budget. 
When the test approach can influence the establishment of a project’s schedule and 
budget, adequate time and resources should be allocated for testing. More commonly, 
the schedule and budget are already set before the testing approach is considered. In 
this case, the test approach changes from “what should we do” to “what can we do”. 
When defining the best test approach for a project scenario, it is good practice to start 
with the “should” and then factor that down to fit the schedule/budget.   
 
When schedule is tight, risk-based testing is the most solid approach. It allows testing 
to be prioritized to mitigate the most important risks first. With a constrained schedule, 
this will help provide visibility to the project team regarding the risk that has been 
mitigated and the risk that is still outstanding.  Because tight schedules often result in 
insufficient testing, it is important that the project team understands and accepts that 
there is significant residual risk. Risk-based testing can be conducted within any 
lifecycle. It is a method of test organization that addresses testing in a risk-based 
order, within the overall project or within an individual iteration. 
 
When the budget is tight, testing often suffers from a lack of time and resources. It is 
important to understand the constraints that will be placed on the testing as early as 
possible. For example, a constrained budget may mean that there will be no 
dedicated test environments. This may force the testing effort to share the same 
environment as the development effort, potentially resulting in inefficiencies and re-
testing. This quickly becomes a schedule issue as well. Insufficient tester resources 
and inadequate tools may also be evident when the budget is constrained.   
 
Any possible issues of this type must be anticipated in the test approach. If testing 
and development will be forced to work in the same environments, using an iterative 
approach is logical because of the close interaction. Pushing more testing earlier (i.e., 
“shift left”) is another way to combat tight schedules and budgets. This allows testing 
to happen sooner and for quality issues to be addressed more quickly.  Testing will 
always be faster and less expensive when the product being tested is of a higher 
quality.  

 2.8. Maturity and Ability of the Team 

One last factor to consider when determining the test approach is the maturity of the 
team as well as the team’s ability. A mature team who has worked together before 
and has a high level of skill and product knowledge may work better with less 
documentation and communication than a team that is new or distributed. 
Documentation is a way of communicating and bridging time zone issues. Less 
documentation means more verbal communication is required. A team that is 
comfortable with web meetings and video conferencing may be more effective with 



 
 

 
 

Testing Essentials, Version 2020  23 

© Association for Testing and Software Quality Assurance 

 

less documentation than a team that prefers emails and documents to convey 
information. 
 
Projects that include multiple teams will require more coordination and timely 
communication to avoid creating bottlenecks and frustration. Teams that have some 
outsourced aspects may require more formalized communication and documentation 
due to contractual requirements. 
 
A well-skilled, mature team can make any testing approach work. The challenges 
often arise in a team with variable or minimal skills and a distributed environment 
where people cannot easily talk with each other. It is important to consider the 
approach that will work best for both the product and the people.   
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 3. Testing Techniques – 215 mins 
Keywords  
Application Programming Interface (API), boundary value analysis (BVA), 
classification trees, combinatorial testing, decision table, equivalence partitioning 
(EP), exploratory testing, orthogonal arrays, pairwise testing, session-based testing, 
test charters, tester 

 
3.1 Introduction 

None 
 

3.2  Partitions and Boundaries 
LO-3.2.a (K3) For a given set of requirements, create a series of test cases 

using a combination of equivalence partitioning and boundary value 
analysis (BVA) testing techniques 

LO-3.2.b (K1) Recall the types of defects that are likely to be found using 
equivalence partitioning and BVA 

 

3.3  Decision Tables 
LO-3.3.a (K3) For a given set of requirements, apply the decision table testing 

technique 
LO-3.3.b  (K1) Recall the types of defects that are likely to be found using 

decision table testing 
 

3.4  Combinatorial 
LO-3.4.a (K2) Describe combinatorial testing and the tools and techniques 

that are used 
LO-3.4.b  (K1) Recall the types of defects that are likely to be found using 

combinatorial testing 

 
3.5  Exploratory 

LO-3.5.a (K2) Explain the concept and application of exploratory testing 
LO-3.5.b  (K1) Recall the types of defects that are likely to be found using 

exploratory testing 
 

3.6  API Testing 
LO-3.6.a (K2) Describe the purpose and application of API testing 
LO-3.6.b  (K1) Recall the types of defects that are likely to be found using API 

testing 
 

3.7  Picking the Best Technique 
LO-3.7.a (K1) Recall how to select testing techniques for a given project 
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 3.1. Introduction  
Test techniques are procedures that are used to identify and select test conditions 
that can be targeted by tests. Test techniques can be applied at any stage in the 
development of software. The earlier testing starts (i.e., the shift left), the more 
effective and efficient the testing is. In the world of rapid lifecycles and continuous 
integration and deployment, testing is a critical task that must be executed to ensure 
that quality is being built into a product. Testing tasks are often shared by developers 
and testers, particularly in mixed skill teams commonly seen in Agile SDLCs. In this 
document, the term “tester” means the person designing and executing the tests as 
an activity, not necessarily a specific role with a “tester” title. For example, a business 
user may be the tester in the UAT activity, but they would not be a full-time tester. 
 
It can be argued that exploratory testing and API testing are actually test types or 
even test approaches rather than test techniques.  Generally, these two types are 
lumped together with the test techniques, so this chapter follows that same approach.   
 
This section explores six common testing techniques that are applicable across a 
wide range of software. For the sake of this chapter, these are grouped together. 
Each of these has particular targets for the testing and is suited to finding particular 
types of defects. No one technique is suitable or effective in all situations and each 
technique has a target coverage. Often, a combination of techniques is used to 
provide the most efficient coverage.   

 3.2 Partitions and Boundaries 

 3.2.1 Equivalence Partitioning 
Equivalence Partitioning (EP) is used to reduce the number of specific tests while still 
assuring broad coverage. EP is usually focused on determining a set of input values 
to use during testing, although it can also be used to categorize output values, 
processing variables or even environments. To apply EP, the set of possible values is 
divided into partitions (or equivalence classes) in which all values in the partition will 
be handled the same way by the software (e.g., positive values will be processed, 
negative values will cause errors).   
 
Partitions can be considered “valid” or “invalid”. All the values in a valid partition 
should be accepted or processed by the software with no errors. All the values in an 
invalid partition should be handled as errors. For example, if the valid partition is for all 
triangles, then everything that is not a triangle is in the invalid partition. For input 
values, if the valid values are from 1-100, then anything below 1 would be in an invalid 
partition for values that are too low; and anything above 100 would be in an invalid 
partition for values that are too high.  
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Once the partitions are established, one value is selected from each defined partition 
(valid and invalid) and how that value is handled is assumed to be representative of 
how all the values in that partition would be handled. 
 
Application 
This technique is best applied when there are known sets of values that will receive 
the same processing. It is commonly used for input values where the set (or partition) 
of values can be determined. A risk with this technique occurs when partitions are 
established with values that actually receive different processing. It is important to 
have good information regarding how the software works when picking the proper 
partitions. 
  
Types of defects 
Defects found by this technique are usually functional in nature and deal with incorrect 
handling of various sets of data (e.g., no error handling for negative values).   
 
Coverage 
Coverage is determined by dividing the number of partitions for which a value has 
been tested by the total number of partitions identified.  For example, if there are ten 
sets of values for which processing is different, and at least one value from each of 
five partitions has been tested, then 50% coverage has been achieved with this 
technique. 

 3.2.2. Boundary Value Analysis 
Boundary Value Analysis (BVA) is an extension of EP and concentrates on testing the 
values that fall on or near the boundaries of partitions. BVA requires ordered partitions 
(i.e., ranges of numbers), to be able to test the boundaries of the ranges. Testing can 
be done with a two-value or three-value approach. With two-value BVA, the actual 
boundary value (in the valid partition) is tested as well as the value that falls 
immediately outside of the partition (in the invalid partition). With three-value BVA, the 
value immediately before the boundary (valid), the value on the boundary (valid) and 
the value immediately over the boundary (invalid) are tested. Two-value is the more 
common application of BVA; however, the three-value method can be very helpful in 
cases when a single threshold is crossed, such as a processing date.  
 
Application 
BVA can be applied to any ordered partition to determine if the values on and over the 
boundary are handled properly. Because this is a common place for errors to be made 
when programming, this tends to be a high yield technique that is relatively easy to 
apply. 
 
Types of Defects 
Defects detected are related to incorrect boundary handling, such as the value of the 
boundary not being included in a valid range of values or a boundary that is not in the 
correct place. Essentially, BVA detects defects due to the incorrect usage of a 
relational operator in the code or a requirement, such as > or =. 
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Coverage 
Coverage with this technique is determined based on how many boundaries are 
tested divided by the number of boundaries there are (determined by the number of 
partitions with each partition having two boundaries).  A boundary test consists of 
either two values or three values, depending on the approach selected. 

 3.3. Decision Tables 
Decision tables are used in requirements engineering and testing to help define how 
business rules should be handled. Decision tables consist of two halves of a table, 
with the top half typically showing the conditions to be tested (one condition per row) 
and the bottom half showing the expected results from a set of conditions (one result 
per row). Columns are used to determine if a condition is to be tested, usually with a 
true/false or yes/no value for each condition. Results are indicated in each column 
based on the results expected for that combination of conditions. Multiple results are 
possible for a particular condition combination (e.g., display an error and return to the 
previous screen). Condition combinations and interactions are tested with decision 
tables by verifying that different combinations of conditions result in the proper 
outcomes or expected results. 
 
Application 
Decision tables are well suited for software that must make decisions based on sets of 
conditions in order to return a proper result. Business rules and any type of non-trivial 
decision logic are good targets for this type of testing. Because the decision table 
itself presents sets of conditions and expected outcomes, it is often used as a shortcut 
to creating detailed test cases.  Decision tables can serve as an organized checklist to 
ensure all significant decision logic is tested without having to further document 
concrete test cases. 
 
Decision tables can also be used to derive additional rules from the software, based 
on the knowledge of only one rule. When only one rule and its conditions and 
outcomes are known, the tester can surmise the proper outcomes of other 
combinations of the conditions.   
 
Types of Defects 
Erroneous decisions and the resulting incorrect outcome(s) are targeted by this type 
of testing.  Decision defects may be caused by incorrect coding or incorrect/unclear 
requirements. When used in requirements engineering and analysis, decision tables 
will often identify condition combinations that are not handled or where the expected 
outcome is unknown, indicating that further analysis is needed. 
 
Coverage 
Decision table coverage is determined by the number of columns covered by at least 
one test divided by the possible combinations (the columns of the table). 
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 3.4. Combinatorial 
Combinatorial testing techniques are used to limit the number of combinations of 
supposedly non-interacting (independent) parameters or conditions that need to be 
tested. The parameters must be compatible, meaning that any one parameter can be 
paired with any other parameter. Because some combinations will be eliminated with 
this technique, it is important to ensure that the conditions should not interact. In the 
case of testing software across a large set of different browsers and operating 
systems, testing every possible combination would be prohibitive in effort. 
Combinatorial testing applies algorithms that are built into tools that mathematically 
reduce the number of combinations to a manageable set while still preserving a good 
level of coverage. 
 
This technique is very helpful in reducing the number of test cases when the potential 
number of test condition combinations are too many to test, either manually or with 
test automation. It is important to note that additional test cases may be needed to 
cover important condition combinations not derived from combinatorial test design. In 
addition, expected results must be documented for each test case, as the 
combinatorial approach only identifies efficient combinations of test conditions, not 
outcomes. 
 
There are a number of tools and approaches used in combinatorial testing. The most 
common of these are: 

• Pairwise testing - in this approach all pairs of combinations are tested 
together, but not all possible combinations 

• Classifications trees - this approach allows the user to create a diagram of a 
"tree" that shows the variables to be tested and then applies an algorithm that 
will cover all singles, pairs, tuples, etc. of the combination of the variables 

• Orthogonal arrays - this approach uses preset arrays of values to determine 
the combinations to be tested 

  
Application 
Any testing that needs to be conducted with non-interacting conditions or variables 
can benefit from this technique. Such instances could include environment variables 
(e.g., operating system, browser, or device type) or combinations of internal variables 
(e.g., car color, car type, or car price).  
 
Types of Defects 
This technique generally identifies defects where a particular combination that should 
be handled is not (e.g., a particular device type is not handled) or where there is an 
interaction between the conditions (e.g., the color of the car influences the price of the 
car). 
 
Coverage 
Coverage with this technique is determined by dividing the number of test 
combinations tested by the number of combinations generated by the specific tool or 
technique. 
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 3.5. Exploratory Testing 
Exploratory testing is a combination of learning how the software works (exploring) 
and testing that it works as expected. Exploratory testing is often session-based 
(sometimes called session-based testing) and may be guided by test charters which 
define the objective for a test session. Session sheets may be filled in at the 
conclusion of the testing to log what has been tested and to note any unexpected 
occurrences for further investigation. Timeboxing is commonly used to set a time limit 
for a session. Timeboxing focuses the testing on the defined objective and controls 
the time that is devoted to a particular charter. 
 
Exploratory testing is most effective when conducted by an experienced tester who is 
trained to detect issues that an untrained operator could easily miss. Those with good 
domain knowledge and testing skills are best suited for this type of testing. In an Agile 
project, someone with a testing background paired with a product owner can help 
produce the best outcome from these testing sessions. 
 
Application 
This technique is well suited to an environment where quick feedback is needed 
regarding the overall quality of an area of the software. This is sometimes called 
“smoke testing” or “sanity testing”.  It also works well in environments where there is 
only minimal documentation regarding the expected functionality of the software. In 
Agile projects, exploratory testing is often used as a first validation that the 
acceptance criteria for a story have been met. This may be followed by more 
methodical testing as time allows. In more formal testing environments, exploratory 
testing may be used to augment other testing techniques in order to check for gaps in 
the test coverage and to allow the tester to bring more creativity to the task. 
 
Types of Defects 
Defects found tend to be functional issues where the requirements have not been 
implemented correctly or where user transactions and scenarios are not supported. 
Non-functional issues may be found in the areas of usability and performance, 
particularly when the testing is concentrated on end-to-end transactions. Security 
issues, particularly access control, may also become apparent with this type of 
testing. Although performance and security defects may be found when exploring, it is 
not a substitute for formal, planned performance and cybersecurity testing. 
 
Coverage 
One of the drawbacks of exploratory testing is the difficulty in determining coverage. 
Because an individual tester may take any number of paths when testing the software, 
it is likely that the coverage will vary widely and that repeatability of the tests may not 
be possible unless detailed notes are recorded in the session sheets. It is possible to 
equate a test session to a test case.  When this is done, coverage of sorts can be 
measured based on the number of sessions (test cases) completed vs. not run. 
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 3.6. API Testing 
API testing is more of an approach to testing than an actual technique.  API testing 
focuses on the interfaces between software components rather than the techniques 
discussed above that are applied to testing primarily conducted from the UI. For 
example, an application may have an interface that it uses to communicate to a web 
service. That interface is called an API. When testing this API, the testing would focus 
on the information passed between the application and the web service, error 
recovery and data handling.   
 
API testing is often conducted with the assistance of tools that will analyze the 
expected inputs of an API and present the user with parameters that must be 
assigned values during the testing.  Testing of an API usually focuses on sending 
values to the API and verifying that the values returned from the API meet the 
expectations. Understanding the purpose of the API is important for creating valid test 
data and to validate the response.   
 
Application 
API testing is often conducted when testing via another interface, such as the User 
Interface (UI), would require more effort than is justified by the result. In many cases, 
manual testing is concentrated on the UI, including the look and feel, while API testing 
is used to validate that the services used by the front end will perform correctly both 
with valid and invalid data. In cases where the UI is not yet available, or is unstable, 
testing from the API may be the most effective approach. Test automation is also 
sometimes concentrated at the API, where it will not be subjected to changes in the UI 
that may break the automation scripts.  
 
API testing requires either the use of tools or programming to access the APIs, send 
data and receive responses. Automating this testing is an efficient approach and will 
allow testing of multiple services independently without having to drive the interactions 
from the UI. Because API testing does not depend on a stable UI, testing can often 
start earlier and automation can be built earlier as well. 
 
Types of Defects 
API testing can find a variety of defects, including functional issues where the right 
data is processed incorrectly, or incorrect data is not detected and reported properly. 
Error recovery issues, such as transactions being re-processed when a service is not 
available or is not responding in a timely manner, can also be detected with API 
testing. Non-functional issues such as performance can be detected with API testing. 
Cybersecurity testing, including access rights and vulnerability detection, can also be 
conducted through the API.  
 
Coverage 
API test coverage is dependent on the capabilities of the API. At a minimum, all input 
and output parameters should be checked with a variety of valid and invalid data. 



 
 

 
 

Testing Essentials, Version 2020  31 

© Association for Testing and Software Quality Assurance 

 

 3.7. Picking the Best Technique 
There is no single perfect technique, which is why anyone involved in testing should 
have a good understanding of the various techniques and be able to apply them 
appropriately. Combinations of techniques are often used to get the best coverage for 
the least amount of effort. For example, pairing decision tables with equivalence 
partitioning can help determine the values that need to be entered to exercise the 
various decision combinations. 
 
It is important to understand the applicability and coverage that can be achieved with 
any of the techniques. Using techniques in combination will help to provide the level of 
testing needed for any product. When developers use API testing as part of unit 
testing, it may make sense to leverage those tests to build the test automation that will 
be part of a continuous integration/continuous deployment implementation. Similarly, 
developing good decision tables and automating the high priority condition 
combinations can give a good level of assurance that the main functionality of an 
application is working. 
 
Exploratory testing, in both formal and informal approaches, is used extensively in the 
industry. It provides quick feedback and can be leveraged to learn about a new 
software release without combing through documentation that may or may not exist. 
While it is a useful tool in the arsenal, it does not provide a way to measure coverage 
and, therefore, large areas of the code can be missed. This is particularly so when 
applied by less experienced testers or developers who are concentrating only on 
certain areas. It is important to understand the goals of testing and the necessary 
level of coverage in order to pick the most appropriate technique(s). 
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 4. Test Automation – 200 mins. 
Keywords 
automation engineer, data-driven, emulators, keyword-driven, simulators, test 
automation framework, testware 

Learning Objectives for Test Automation  
 

4.1 Introduction 
None 

 

4.2 Selecting Test Automation Candidates 
LO-4.2.a  (K1) Recall how ROI for test automation is determined 
LO-4.2.b  (K2) Explain the factors to be considered when determining if a 

project is well suited for test automation 
 

4.3 Building Maintainable Test Automation Software 
LO-4.3.a (K2) Explain the differences between data-driven and keyword-

driven test automation 
LO-4.3.b (K2) Understand the purpose of a test automation framework 
LO-4.3.c (K1) Recall why test automation must be updated 

 

4.4 Benefits of Automated Testing 
LO-4.4.a (K1) Recall why test automation can increase test coverage 
LO-4.4.a (K2) Describe the benefits of test automation 
LO-4.4.b (K1) Recall how test automation can reduce costs 

 

4.5 Test Automation Risks 
LO-4.5.a (K2) Explain the risk factors for automation projects 

 
4.6 Test Automation Success Factors 

LO-4.6.a (K2) Explain the success factors for automation projects 
LO-4.6.b (K1) Recall the recommended order for automation implementation 

 
4.7 Test Automation Tools 

None 
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 4.1. Introduction 
Test automation is a method of testing that uses automated test scripts rather than 
manual test cases. The test scripts are small software programs written in a scripting 
or programming language that accomplish the goals of a test by controlling the inputs 
to a software module and verifying that the results match the expectations. In its 
simplest form, a script mimics the user interaction with the system under test (SUT) 
and is programmed to report any variances from the expected behavior.   
 
Test automation can be expensive to implement, but, when done correctly, can save 
enormous amounts of manual testing effort. With effective use of test automation, the 
quantity of tests executed can be increased, which results in greater requirements 
coverage, shorter time for execution and higher reliability and repeatability in the 
testing. 
 

 4.2. Selecting Test Automation Candidates 

In order to maximize the efficiency of the automation effort, the test automation must 
be designed for long term use and maintainability. The return on investment (ROI) for 
test automation is based on the amount of money/time required to build the initial 
software and to maintain it over its lifetime (the investment), compared with the time 
saved from the equivalent manual testing effort (the return).  A test automation project 
is only worthwhile if the return will be higher than the investment. Not all software is 
suitable for automation and attempting to automate unsuitable software will reduce the 
potential return while increasing the investment. 
 
Good project candidates for automation share some common characteristics. 
 
Expected long term usage – Because test automation is generally expensive to 
develop due to the cost of the tools and the effort to create the test scripts, the 
resulting automated tests need to be run multiple times to recover the costs. A 
standard heuristic is that the target software should remain in production for 2-5 years 
in order to regain the automation costs.   
 
Stable functionality and interface – To reduce maintenance costs due to changes in 
the programmed scripts, it is more cost effective to create the test automation at the 
point when the target software has stabilized. Stabilization is generally reached when 
a set of core functionality is working and will not be substantially changed. It is also 
important for the interfaces used by the automation (e.g., the UI, the APIs) to be 
established and unchanging. Changes to the interface will require updates/changes to 
the test automation scripts that access the SUT via that interface. 
 
Need for frequent regression testing – The best automated tests are those that are 
used frequently.  When the software under test has need of frequent regression 
testing, test automation can be utilized to effectively and quickly conduct those tests 
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and provide reliable and repeatable results. The more frequently the tests are used, 
the higher the return on investment. 
 
Adequate tool support – Not everything can or should be automated. While there 
are many tools, and the tool family continues to improve and expand, there may be 
situations where the right tool is not available. This sometimes happens with code that 
uses unique interfaces or for embedded software that is communicating with 
hardware. Some of these issues can be resolved with simulators (i.e., software that is 
created to act like the software under test) or emulators (i.e., software that is created 
to act like the software working on the hardware under test), but sometimes the only 
option is to create a custom tool. Before this option is selected though, there must be 
an understanding of who will provide on-going support for the tool and how much 
effort will be required to create the tool. 
  
Adequate skills in the team – Developing test automation is a software development 
project and should be conducted as such, with proper design, architecture, 
development, testing and documentation. While some tools provide a more user-
friendly interface (generally at a higher cost), true programming skills are usually 
required to either write the test automation scripts or to write “glue-ware” that will 
stand between the test automation scripts and other capabilities (such as opening and 
parsing emails). 
 
Management support – Test automation can be an expensive process and requires 
management support, understanding and approval. Tools can be expensive to 
purchase and may have license renewal considerations. Specific programming skills 
are required which may necessitate hiring people with skills for the selected tools. 
Because schedules can sometimes be delayed, it is important for management to 
have a clear understanding of the work required to achieve the desired level of 
automation.  

 4.3. Building Maintainable Test Automation 
Software 
Maintainable test automation starts with building an automation framework. The value 
of a test automation framework is that it provides a way to identify and control all test 
automation testware. Without a framework, the result is often an inconsistent and 
unmanageable collection of automated test scripts. Building the framework also 
requires implementing the right tools, selecting and training the right people and 
creating the overall automation plan. The following steps are needed to create an 
effective framework for test automation.  

 4.3.1. Deciding on Data-Driven vs. Keyword-Driven Approach 
Data-driven test automation separates the test script (the steps to be executed) from 
the data to be used (for input and verification). The data is usually accessed by the 
script from a spreadsheet or database and is maintained by a test analyst with good 
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knowledge of the domain to be tested. This allows for the best use of the 
programming skills of the automation engineer while the testing skills of the test 
analyst are leveraged to supply and control the data. This separation provides a 
higher level of maintainability by allowing a single script to conduct many tests where 
the only variance is the test data. 
 
Keyword-driven test automation goes one step further and uses action words, or 
keywords, to describe the actions to be performed by the script. The test analyst 
defines the actions that are to be tested (e.g., add a user) and the data to be used by 
the actions (e.g., first name, last name, and address). The automation engineer writes 
a test script that will read the action and then perform the appropriate steps using the 
provided data. This type of coding allows the script and the data tables with action 
words to be reusable for multiple tests and limits the areas where changes are 
needed when new functions are added. 
 
Keyword-driven test automation is particularly well suited for early automation 
development with Agile and similar SDLCs where automation is built while the 
software is still evolving. New keywords can be added as new functionality is 
developed, allowing automation to start early without creating a large maintenance 
effort later (i.e., accruing technical debt). 

  4.3.2. Implementing the Framework 
When a framework is created, standards are established for the test automation 
development project.  Naming conventions are defined and reusable functions are 
created to form the basis of the library.  Elements from the library can be re-used in 
various scripts, reducing the need for development and lowering the maintenance 
requirements by having common shared code. A good framework is essential for 
creating efficient test automation that will be maintainable across a set of automation 
engineers. A framework, once established, also allows automation engineers to work 
on adding more to the function library as time allows, making the framework a living 
structure. 

 4.3.3. Building Continuously 
An automation project is generally considered complete only when the software under 
test is no longer changing and no changes to existing tests are needed. Until that 
time, the automation must be continuously monitored, maintained and augmented to 
maintain and increase coverage of the software under test. Test automation that is not 
updated will result in declining coverage over the life of the software under test, 
increasing the chances of regressions escaping unnoticed. It is important to 
understand the on-going maintenance costs of a test automation suite to factor into 
the budget. 

 4.4. Benefits of Automated Testing 
There are a number of benefits to automating testing.  The primary benefits include 
the following: 
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• Automation can execute more tests in a shorter period of time, which in turns 
helps to increase test coverage 

• Scripted tests will always run the same steps in the same order, providing 
greater reliability, repeatability, and improved consistency  

• Reusability of automated tests facilitates future regression testing  

• Faster release cycles are possible with lower regression risk 

• Tests that are complex and difficult to execute manually can be good 
candidates for automation, to reduce the burden on the manual test effort 

• Using data-driven or keyword-driven techniques allows more tests to be 
generated by adding more actions/data with no scripting changes 

• The same tests can be run against various hardware and software 
configurations resulting in compatibility tests being automated 

• More time is available for testers to explore new areas of the software that may 
have previously been untested, resulting in higher quality software 

• By improving the frequency of testing (particularly regression testing) the 
continuous testing required for DevOps initiatives is possible 

• By testing earlier with the use of automated tests, defect detection and 
remediation is less expensive 

• Tests can be executed at times when people do not need to be using the 
system 

 
A well-implemented test automation program will result in overall improvements to the 
efficiency of the testing, which in turn results in lower test execution costs. Test 
automation allows an organization to move to a faster release cycle with higher 
quality, allowing better responsiveness to market needs.  

 4.5. Test Automation Risks 

There are risks with a test automation effort. These risks include the following: 
• Management may perceive there is less need for manual testers when 

automation is in place.  In reality, manual testers’ roles are expanded when test 
automation is introduced. 

• Automated testing is not automatic testing. Test automation systems can be 
brittle if not designed and constructed properly. This is a problem that is 
frequently seen with scripts that have been recorded from execution rather than 
having been designed for maintainability and reusability. Recorded scripts can 
be a basis for script development, but the recording must be converted to a 
reusable, well-structured and maintainable script.  

• Test automation does not necessarily improve the effectiveness of testing in 
terms of defects found, as the quality of the automated tests depend on the 
quality of the test cases (such as the correct test conditions) and the basis for 
the tests (such as specifications). It is common for automated tests to become 
more confirmatory in nature as opposed to discovering new defects. 

• Proper tool selection is critically important. Selecting the wrong tool due to an 
inadequate evaluation process can create extra effort and may render the 
implementation impossible.  
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• Tool support must be reliable. Open source tools may go dormant if there is no 
strong community support. A commercial tool’s vendor may go out of business 
or change directions.  Tools may experience unexpected changes requiring 
unplanned changes in the testware. 

• Automation will not solve all testing problems. If a good testing process is not 
already in place, the automation effort may just speed up chaos. 

• Accurate reporting can be difficult. Failures may cascade causing the numbers 
to inaccurately reflect the quality of the software. Defects must still be analyzed 
and documented by a person. 

• Poor maintainability will be expensive. Potentially, very expensive. 

 4.6. Test Automation Success Factors 
In addition to the characteristics of good automation targets, there are also some 
common success factors that will help to ensure the automation effort achieves the 
defined goals. 

 4.6.1. Find the Right Project 
The first step in a test automation project is identifying the appropriate software 
system candidate. Systems that are near their sunset years and will soon be retired 
are generally not considered good candidates for automation as the return on 
investment will be short-lived. An exception to this might be starting test automation 
development on a retiring system to capture data and tests that will be valid in the 
replacement system, albeit with adjustments for the new interface.   

 4.6.2. Build Automatability into the System  
Building a maintainable and reusable test automation suite starts with ensuring that 
the design of the system to be tested supports and facilitates test automation. One 
common issue in test automation efforts is trying to automate software which is 
inherently difficult to automate. This could be because it contains inconsistently 
named or mis-named objects. For object-based test automation (which is the standard 
and preferred approach in test automation), object identification is essential for 
creating maintainable test automation. Limited test access to APIs, a lack of 
observability during testing, insufficient logging, etc.  can also significantly complicate 
the test automation effort, leading to more time and money spent on maintenance 
throughout the life of the automation. Early involvement by the automation engineer 
during the design of the system to be tested can help to ensure that the necessary 
support for the automation is built into the system. 

 4.6.3. Show Early Success 
A large automation project can take years to complete. It is important to create interim 
milestones and demonstrate that the milestones are being met. In general, there are 
three areas of automation focus.  In order of priority (and to provide the most visible 
return on investment quickly), implementation should proceed as follows: 
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• Create acceptance/verification tests for the software build – these are positive 
path tests that are used to verify that the code added to the build did not “break” 
the build. These tests are run every time code is committed and provide fast 
feedback to the developers if any issues have been introduced. In a frequent 
build environment, such as Agile, or in a continuous integration model, this 
automated testing is critical to the success of the process. 

• Regression tests – regression tests are generally stable and well-defined. 
Automation for these tests is efficient because they will be used many times 
over the life of the product and that automation will save significant manual test 
execution time. Automated regression tests allow a team to release software 
safely, more frequently, and free testing time for more important areas. 

• Functionality tests – in general, test automation is faster when the software 
being tested is stable. This results in fewer changes to the automation because 
the code being tested is not changing. That said, functional testing still needs to 
be automated, particularly in the rapid SDLCs, such as Agile. In this case, the 
code may not be stable as new features are still being added and evolved. 
Maintainability in design is critical for the test automation effort to be able to 
make forward progress and not be consumed by maintenance issues.   

 4.6.4. Review the Plan 
Original estimations for an automation effort are sometimes wrong.  This may be due 
to technical issues, frequently changing SUT, slow ramp-up of the testing team or 
other reasons.  Reviewing the plan and validating the schedule should occur on a 
periodic basis to understand changes to the schedules and identified risks.  It is also 
important to continually set realistic milestones and report on the achievement of 
those to the management sponsors of the effort. 

 4.6.5. Define Ownership 
Automation requires upkeep and analysis to ensure it is working properly. Identifying a 
resource that can be called upon to detect and correct issues is critical to continued, 
uninterrupted use of automation in testing. Likewise, it is important to identify who will 
run the test automation and when it will be run. Often the manual testers assume the 
responsibility to execute the automation and do the preliminary debugging if an issue 
is found (by manually testing any failures that occur). This helps the manual tester to 
engage with the automation and also frees the automation engineers from debugging 
issues that may be due to data or environment changes. 

 4.7. Test Automation Tools 
Early tools depended on recognizing characters that a user entered onto the screen or 
via a command line. With the advent of graphical systems, tools evolved to support 
coordinate-based positioning and text recognition of fonts and screen characters. 
Eventually, tools further evolved to recognize the native objects displayed on the 
windows, where multiple object attributes could be verified and the objects themselves 
could be accessed for interaction. With the advent of interfaces such as those used 
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for web services, tools additionally supported the ability to bypass the UI and call the 
function, service, or method directly, often through the API. 
 
Future uses of automation tools will include robotic process automation (RPA), 
artificial intelligence (AI) and machine learning to allow the tests to adapt to the 
executing software, providing greater coverage and less up-front programming from 
the automation engineer. 
 
Test tools cover a range of features, functions and levels of customizability. For teams 
with strong programming skills, tools that allow development of purpose-built functions 
are appropriate. For less technical test teams, tools that require minimal programming 
may be more appropriate. It is important to identify a tool that meets both the needs of 
the SUT and the skills of the team. 
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 5. Performance Testing – 200 mins. 
Keywords 
concurrency testing, load test, objectives-based reporting, operational profiles, 
performance testing, risk-based reporting, scalability, stress test 

Learning Objectives for Performance Testing    

 
5.1  Introduction 

None 

 
5.2  The Purpose of Performance Testing 

LO-5.2.a (K1) Recall the goals of performance testing 
LO-5.2.b (K2) Explain why defining and getting agreement on performance 

requirements is important 
LO-5.2.c (K2) Explain how performance testing aligns with the SDLC 

 

5.3  Performance Testing Risks, Benefits, and Challenges 
LO-5.3.a (K1) Recall the unique challenges of performance testing 
LO-5.3.b (K1) Recall the risks of performance testing 
LO-5.3.c (K1) Recall the benefits of performance testing 

 

5.4 Performance Testing Approach 
LO-5.4.a (K2) Describe the components that should be included in a 

performance test plan 
LO-5.4.b (K2) Explain the factors to be considered when defining the test 

approach 

 
5.5  Conducting Performance Testing 

LO-5.5.a (K1) Recall the steps for conducting performance testing 
LO-5.5.b (K1) Recall the components that should be checked during 

performance test preparation 
LO-5.5.c (K1) Recall how performance test results differ from functional test 

results 
LO-5.5.d (K1) Recall the types of performance test reporting 

 

5.6  Performance Test and Analysis Tools 
LO-5.6.a (K1) Recall why tools are necessary for performance testing 
LO-5.6.b (K2) Describe the challenges that can be encountered with 

performance testing tools 
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 5.1. Introduction 
Performance is a major quality factor in most systems and applications, regardless of 
the computing environment. A system or application may be functionally correct, but if 
it fails to deliver the needed performance it is likely to be considered a failure.  
Performance testing is one way to measure system performance in advance of 
deploying the system.  
 
Performance testing should start at the component (unit) test level and continue until 
system deployment. Waiting until the end of a project to conduct performance testing 
carries the high risk that performance problems will not be solvable due to time, 
money and technological constraints. 
 
One of the most costly and publicized performance failures occurred during the 
Facebook Initial Public Offering (IPO), when the NASDAQ stock exchange could not 
handle the volume of trading on the day of the IPO. The cause of the failure was 
determined to be three lines of code that got into an endless loop. To date, NASDAQ 
has paid over $80 million in fines and restitution. In addition, the United States 
Securities and Exchange Commission imposed requirements on NASDAQ to help 
prevent similar failures in the future [NASDAQ]. 

 5.2. The Purpose of Performance Testing 
Performance testing can have multiple goals and purposes, including: 

• Measuring system performance under given conditions 

• Determining the maximum concurrent user load or transaction volume a system 
can handle before it fails 

• Providing information to assist in capacity planning for a system 
 
Significant time and money can be invested in performance testing. In order to obtain 
the best return on investment, the testing must be targeted correctly and the goals 
clearly defined. This can be difficult since different stakeholders may have varying, 
even conflicting, views of “acceptable” performance. In order to be successful, there 
must be agreement in the project team regarding what the performance testing will 
measure and what will constitute a successful result.   

 5.2.1. Defining Performance Requirements and Getting Stakeholder 
Agreement 
Documenting performance requirements can be challenging.  Eliciting the 
requirements can be even more difficult.  When documented, performance 
requirements are normally recorded in over-arching requirements, such as “all system 
responses to users that require longer than 3 seconds must display a wait 
notification”.  In an Agile environment, these requirements may be documented in 
specific non-functional Epics. 
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Without stakeholder performance requirements, it is hard to know if the observed 
levels of performance are adequate, making it difficult for testers to make a reasoned 
assessment of test results. A complicating factor in determining system performance 
requirements is that the assessment of “acceptable” performance can be subjective. 
 
Getting agreement on performance requirements can be quite challenging because of 
the subjectivity of opinions and the cost required to achieve higher levels of 
performance. For example, one stakeholder group might feel that a response time of 
two seconds is acceptable, while another group might feel that a response time of one 
second or less is required. The cost to achieve the one second response time might 
be quite high (e.g., 5x improvements in hardware, more robust networks, major 
modifications to code or databases), whereas two second response time may be 
easily achieved. 

 5.2.2. Aligning Performance Testing in the SDLC 
As with all forms of testing, performance testing needs to be integrated with the 
SDLC. Regardless of the SDLC, full lifecycle performance testing is needed to detect 
performance problems early, when they are easiest to fix. 
 
The following activities in an SDLC have key tasks for performance testing: 

• During requirements definition, the specific requirements for performance (and 
definition of the expected load) should be clearly defined and agreed to by all 
stakeholders. This will eliminate debate  when the results are reviewed later. 

• During design and coding, performance factors must be considered and built 
into the design and the subsequent code. Inefficient code or an inefficient 
design will be difficult and costly to fix later. 

• During integration and system testing, new performance testing opportunities 
can appear. Any new integration may introduce inefficiency and potential 
performance bottlenecks. 

• During acceptance testing, a major objective is to assess performance within 
the business or operational context. In some cases, performance testing is part 
of contract acceptance testing and operational acceptance testing. 

 5.3. Performance Testing Risks, Benefits, and 
Challenges 
Performance testing has unique challenges, primarily due to lack of understanding of 
the complexity and cost of good performance testing. These include the following: 

• Getting definition and agreement from stakeholders with regards to acceptable 
system performance 

• Getting adequate funding for performance testing tools 

• Acquiring the best fit solution for a performance testing tool, within the schedule 
and budget of the project 

• Accurately profiling load levels at given periods of system usage 
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• Acquiring skilled test engineers to plan, design and conduct a realistic 
performance test 

• Building a representative performance test environment 
 
Unless these challenges are met and understood, the performance test effort may 
never start or will not be effective. In addition to the above challenges, performance 
test efforts have risks that must be considered and mitigated in order to achieve the 
expected benefits. 

 5.3.1. Risks 
Performance testing has the following risks: 

• Inadequate performance test design, resulting in inaccurate or incomplete test 
results 

• Incomplete coverage of protocols and connectivity, resulting in important 
aspects of performance testing for a particular system or application being 
missed 

• Inadequate test environments, resulting in inaccurate test results and 
erroneous conclusions 

• Inability to apply the performance tool correctly, resulting in inefficient, 
inaccurate, and inconclusive tests 

• Inadequate coverage of functions, resulting in incomplete test results 

• Inadequate amounts of user and data load, resulting in inaccurate and 
incomplete test results 

• Lack of defined stakeholder requirements for performance, resulting in the 
inability to identify performance targets 

• Lack of agreement on defined stakeholder performance requirements, leading 
to conflicts concerning acceptable levels of system performance 

• Lack of appropriate performance metrics, resulting in test reports that are 
incomplete or lack depth of meaning. 

 5.3.2. Benefits 
If the challenges are met and risks mitigated, significant benefits can be expected 
from performance testing. These include the following: 

• Opportunities to “right-size” the system to handle expected load 

• Opportunities to plan mitigation steps if loads exceed expected levels 

• Early test results can help define the acceptable levels of performance 

• Expectations for future growth can be tested to know if the system will be able 
to support it 

• System performance weaknesses can be identified and fixed before being 
discovered in production 

• Long lead time items, such as adding more hardware or improving network 
resiliency, can be addressed in adequate time before a production launch 

 
Because performance issues may be expensive or time-consuming to rectify, 
identifying them early on allows the greatest chance for mitigation before an exposure 
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in the production environment.  Performance testing is often intended to merely 
confirm expectations that the overall system is fit for purpose, but frequently results in 
identifying significant problems that must be corrected. 

 5.4. Performance Testing Approach 
Performance testing often requires a separate planning effort. This effort is focused on 
the particulars of the performance testing, such as sizing the test systems, procuring 
resources and planning uninterrupted testing time. 

 5.4.1. Defining the Test Plan 
Performance test plans generally include the following information: 
 
Scope 
The correct setting of scope in performance testing is a critical activity to ensure that 
the targeted objectives are met. The scope is often framed by the following: 

• Functionality – What features will be included or excluded from the 
performance testing? 

• Architecture – Which aspects of the system architecture (e.g., networks, APIs, 
devices, databases) will be included? 

• Transactions – What typical user transactions will be included in the testing? 

• Users – Which classes of users should be included based on selection factors 
(e.g., location, type of transactions, demographics, concurrent usage)? 

• Data – How much data should be used and how should it be accessed? 
 
Strategy and Approach 
The performance test strategy and approach can define the way performance testing 
is to be conducted. For example, an organization might decide to outsource 
performance testing if it lacks the tools and skilled people to conduct the testing on its 
own. 
 
Risk Assessment 
As in much of testing, performance testing can also be risk-driven to focus testing on 
areas of the system, or on functions and transactions, that carry the highest risk, such 
as those with the highest use.   
 
Definition of Test Objectives 
Performance test objectives describe, at a high level, what the performance test is 
intended to achieve. Oftentimes, these are worded as performance objectives to verify 
and/or validate. For example, “Verify the system response time is 1 second or less at 
peak load times.” 
 
Responsibilities 
Team roles must be defined, along with roles and responsibilities for those external to 
the team and the organization. Performance testing often requires the support of 
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system architects, database analysts, network engineers and other specialists who 
can participate in troubleshooting and system tuning. 
 
Reporting Metrics 
Metrics have a very important role in evaluating performance test results. It is 
important to define which metrics are most meaningful to stakeholders – both 
business and technical – and ensure those metrics are tracked by the selected 
monitoring tools. Some metrics, such as average response time, may not be 
meaningful or as useful as the response time for 90% of the users. This will help 
eliminate any outliers that can skew the average.  
 

 5.4.2. Defining the Test 
Depending on the formality of the environment, the test approach may be defined as 
part of the performance test plan or defined separately. The test approach must 
consider the following: 
 
Environments 
Test environments are a key concern in performance testing because of the need to 
obtain representative results. The challenge is that full-scale dedicated test 
environments are often difficult to build due to cost and complexity. One possible 
alternative is to use a cloud-based test environment that can be rapidly scaled to 
simulate production configurations. 
 
Unfortunately, it is not wise to simply predict performance at higher levels of scale 
based on lower system capacities. It is normally necessary to apply realistic load with 
realistic system conditions. 
In some cases, such as in new system development, the system under development 
can be tested in the same system configuration that will eventually become the actual 
production system. 
 
Load and Throughput Profiles 
To accurately design performance tests, current and predicted profiles must be 
understood for both load levels and data throughput, such as peak load times and 
load levels. A common way to know performance profiles is to measure and study 
user behavior and levels as captured in system analytics. 
 
Operational Profiles 
Operational profiles describe the functions users are expected to perform on the 
system and the frequency of these activities. These can be seen as simple functions 
or wider-ranging workflows for end-to-end transactional testing of the system, 
sometimes called “transaction threads”. Operational profiles are implemented as 
scripts to be executed by virtual users, creating an accurate environment for 
measuring performance. 
 
Test Data 
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Representative amounts and types of test data are often at the heart of performance 
testing. This data may be generated by tools or copied from a production environment 
if no private data is involved.  

 5.5. Conducting Performance Testing 
In order to run the performance test, several other steps are needed. The tests must 
be prepared (including the environment and data), they must be executed, the results 
must be evaluated and reported, and there may be a need for on-going monitoring. 

 5.5.1 Test Preparation 
Prior to test execution, the following components should be verified as ready for the 
testing:  
 
Test Environment 
It is often helpful to run preliminary tests to make sure basic test environment 
elements are in place and working correctly and that proper access is available. It is 
also important to validate that all co-existing applications and systems that could 
cause a performance load are in place and operational, as these systems can also 
place performance load on the test environment. 
 
Test environment capacities need to be verified as correct. For example, CPU levels, 
database size and network configuration all have an impact on system performance. 
 
Data 
All databases and files should be populated with the designed volumes of test data to 
ensure the tests are not blocked due to insufficient or incorrect data. Generating this 
data and verifying its correctness must be conducted prior to performance test 
execution.  
Testware (Test Scripts, Procedures, etc.) 
As part of test preparation, it is vital that the designed and implemented testware is in 
place and executing correctly as designed. An effective activity is to conduct a 
preliminary test using a representative sampling of test procedures to verify functional 
correctness and data accessibility and accuracy.   

 5.5.2. Test Execution  
If the preparatory steps have been completed, then test execution becomes a matter 
of running the tests in the tool and monitoring the execution. Monitoring features are a 
part of many performance test tools. However, the interpretation of test results 
requires human intelligence.  
 
Sometimes, it is only by observing test results in real-time that some performance 
anomalies may be identified. For example, it is common in a performance test to ramp 
up load levels. In some test tools, the impact of increasing system load can be seen 
by analyzing graphical representations after the test is complete. However, other tools 
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may primarily display test results in a text-based format. In those cases, it is helpful to 
observe system behavior and metrics as the test is in progress. 

 5.5.3. Test Evaluation  
In contrast to functional testing, where test outcomes can be evaluated as “pass” or 
“fail”, performance test results tend to be more comprehensive and informative. The 
main question that performance testing seeks to answer is “Does system or 
application performance meet stated performance goals or requirements?”   
 
It is important to understand that performance testing is highly dynamic and 
dependent on many factors, such as user load, workflows performed, system capacity 
(CPU speed, database efficiency, code efficiency, and networking configuration), and 
system configuration. Changing any of the variables can significantly affect the 
results. 
 
Performance testing is a snapshot view. Even a small change to the system can 
cause improvements or degradation of performance. For this reason, performance 
testing should be performed throughout system development and after release to 
production. 
 
Performance testing is sometimes used to assess the system’s capabilities. While 
load testing can determine performance levels at given load levels, stress testing can 
reveal the maximum capacity the system can handle based on a given configuration. 
This information can help capacity planners to know if system upgrades will be 
needed, and if so, when they may be needed. 

 5.5.4. Test Reporting  
The main deliverable of performance testing is the reporting of the test results. 
Performance test reporting will vary depending on the audience and the purpose of 
the test. Since each stakeholder group has differing levels of technical understanding, 
test results need to be presented in ways that each group can understand and find 
meaningful.  
 
Risk-based Reporting 
As in other forms of testing, risk-based reporting can help identify which aspects of 
system performance may carry the most relative risk. This risk-based view of 
performance test reporting can help stakeholders understand where to focus efforts 
for the most effective system implementation decisions. 
 
Objectives-based Reporting 
In objectives-based reporting, performance test results are reported with traceability to 
performance test objectives, such as the expected response time to a specific user 
action. This allows testers and stakeholders to know whether or not performance 
objectives have been met as demonstrated by the success or failure of performance 
tests. 
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 5.6. Performance Test and Analysis Tools  

 5.6.1. Why Tools are Essential for Performance Testing 
Performance testing is one type of testing that is not feasible without tools. Tools are 
used for the following: 

• Creating simulated concurrent user load – This simulated load is used for 
concurrency testing. It is more precise and does not require as many resources 
as trying to test with large numbers of people. Concurrency testing is used to 
determine how the system will perform with a consistent load of virtual users 
who are “concurrently” using the system. 

• Sustaining high levels of load – Even if it was possible to generate enough load 
with actual people, it would be difficult to sustain the load long enough to get a 
good measurement or to allow repetition of the test.   

• Accurately measuring load levels and system response time, CPU utilization, 
memory allocation, etc. –  It takes more than a stopwatch to measure response 
times. Most performance test tools have features to measure aspects of the 
SUT that directly impact performance. For tools that lack robust monitoring 
functionality, it is possible to obtain tools that independently monitor test 
performance. 

• Repeating performance testing whenever needed – Performance tests must be 
repeated as changes are made to the application and system. Often, during 
performance testing, system tuning takes place to improve the performance. 
This requires re-execution of the tests to ensure that the expected improvement 
has been realized. 

 5.6.2. Tool Challenges 
Although tools are needed for performance testing, there are some challenges to 
overcome: 

• Performance test tools do not know what to test – The performance tester must 
determine which functions to test, how many concurrent users to simulate, 
which data to use, and other conditions to achieve the test objectives. 

• The environment has to be representative  –  For many people, building a 
performance test environment may be the greatest challenge of all. Adequate 
performance test environments may require an investment in hardware, 
software, people, and tools – all scalable to the level of production use.  Cloud-
based virtual test environments have become an attractive alternative to 
physical environments in some cases. 

• High volumes of test data will be needed  – This may require the use of test 
data generation tools or strategies to modify a copy of existing production data. 

• Expertise is needed  –  Performance testing requires skills and experience not 
commonly found in many organizations. It is common to obtain outside 
consultation when first starting to plan and conduct performance testing. 

• Tools can be expensive  –  The most robust and popular performance test tools 
can be very expensive. While new tools in the marketplace help to keep pricing 
competitive, organizations that have large investments in performance test 
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tools may be less inclined to switch to more affordable tools.  Even open source 
tools have a cost in learning and maintenance. 

Selecting the proper tools requires evaluating a number of factors including long-term 
cost, training requirements, vendor reliability, etc. Because performance tools may be 
significantly expensive, it is important to consider the life expectancy of the tool, the 
ROI and the likely future requirements for tooling. 
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 6. Cybersecurity Testing – 200 mins. 
Keywords 

cyberattack, cybersecurity, cybersecurity testing, fuzzing, cybersecurity controls, 
social engineering, system hardening, threat actors, threat intelligence, threat 
modeling, vulnerabilities 

Learning Objectives for Cybersecurity Testing    
 

6.1  Introduction 
LO-6.1.a (K1) Recall the definition of cybersecurity 
LO-6.1.b (K1) Recall the cybersecurity attributes of assets 
LO-6.1.c (K1) Recall the function of cybersecurity controls 

 
6.2  The Purpose of Cybersecurity Testing 

LO-6.2.a (K2) Explain the necessity to both verify requirements and validate 
the system during cybersecurity testing 

 

6.3  Cybersecurity Differences 
LO-6.3.a (K2) Explain the unique differences of cybersecurity testing 

 
6.4  Cybersecurity Testing Approaches 

LO-6.4.a (K1) Recall when cybersecurity test planning should take place 
within the SDLC 

LO-6.4.b (K2) Explain how cybersecurity testing contributes to risk 
management 

LO-6.4.c (K2) Explain how testing can enhance the stages of a cybersecurity 
effort 

 

6.5  Conducting Cybersecurity Testing 
LO-6.5.a (K1) Recall why cybersecurity testing must be pre-authorized 
LO-6.5.b (K2) Explain how white-box testing is used in cybersecurity testing 
LO-6.5.c (K2) Explain how black-box testing is used in cybersecurity testing 
LO-6.5.d (K1) Recall the controls that can be targeted by cybersecurity tests 

 
6.6  The Environment of Constant Change 

LO-6.6.a (K1) Recall ways to keep up to date with cybersecurity and 
cybersecurity testing practices 
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 6.1. Introduction 
Cybersecurity was commonly called information security or information assurance - 
the latter emphasizing the need to be confident or assured that digital resources are in 
fact secured.  Cybersecurity refers to protecting computer systems, including their 
electronic data, software and hardware, from theft or damage as well as from 
disruption or misdirection of the services they provide.   
 
Valued data or computerized processes are referred to as assets. Their security 
attributes typically are described as confidentiality (and its corollary, privacy), integrity, 
and accessibility: the so-called “CIA” triad. Confidential material should only be 
entrusted to designated parties for specific purposes, respecting the owner’s privacy. 
The integrity of an asset is dependent on the assurance that it has not been tampered 
with via unauthorized access. When data or a service is needed, it needs to be 
accessible only to authorized users. 

 
Cybersecurity addresses the need to protect the integrity and confidentiality of digital 
assets, as well as the accessibility of online processes. Computerized systems in the 
past suffered almost all of their failures due to defects in design or implementation. 
Today, however, so-called threat actors (malicious individuals or groups) conduct 
cyberattacks to compromise systems by deliberately misusing them. Critical 
infrastructures – including energy, communication, transportation, and finance – are 
now heavily computerized; defenses against online assaults are the essential 
responsibility of cybersecurity.  
 
Protection of system resources and processes is the function of cybersecurity 
controls. These controls range from straightforward precautions such as account 
passwords to sophisticated automated detection and response mechanisms. Different 
cybersecurity controls may be designed to reduce the likelihood of successful attacks 
or to minimize the damage done if any attacks succeed. None of these protections are 
flawless, hence, anyone wishing to compromise computerized systems will be looking 
for weaknesses, known as vulnerabilities, in the controls. 
 
Consider the situation in terms of the classic elements of criminality: motive, means, 
and opportunity. Vulnerabilities in cybersecurity controls are the opportunities - 
success depends on bypassing these controls. Malicious individuals and groups might 
be motivated by greed, revenge or ideology. But they will need knowledge, skills, and 
resources – the means of attacking – to take advantage of an opportunity and 
successfully compromise security. The strength of their motivation determines their 
persistence or willingness to risk detection. 

 6.2. The Purpose of Cybersecurity Testing                                 
Cybersecurity testing probes systems to reveal potential failures in furnishing the 
desired level of security. As with any other testing, cybersecurity testing reveals the 
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presence of defects but cannot confirm their absence. It provides value both as 
verification (“Was it built right?”) and as validation (“Was the right thing built?”). 
 
Where security requirements have been specified, testing can verify how adequately 
these requirements are satisfied. Threat modeling, based on threat intelligence, 
anticipates the nature of assaults that might be encountered in the operating 
environment of the system. System designers provide corresponding controls, and 
testing can verify the extent to which those controls provide the specified protection. 
 
Specification of what a system should do is often less difficult than elaborating what 
the system should not do. Beyond defining and confirming controls, one must probe 
for unacceptable behaviors and validate proper functioning in an operational 
environment. To be realistic and meaningful, these tests need to model the projected 
capabilities of realistic adversaries, as identified through threat modeling. 

 6.3. Cybersecurity Differences  

• It must be responsive to a rapidly changing environment  – Vulnerabilities 
in complex interrelated systems are usually subtle and may lie dormant for 
years before suddenly being exposed. Systems also evolve by the modification 
or addition of features and by new interactions with other hardware and 
software, any of which can introduce new vulnerabilities. 

• The adequacy of established controls is under constant active probing  – 
Threat actors of widely varying motivations, capabilities, and resources fill the 
arena. When they can expose the weakness of a control they will promptly seek 
to exploit it and, in some cases, expose it to other threat actors. The ability and 
resources possessed by threat actors will only increase, especially as state-
sponsored attacks increase.  

• Cybersecurity testing must address detection, response, and recovery after 
controls fail  – It needs to establish the resilience of the system when 
vulnerabilities are successfully exploited. It must evaluate how well risk mitigation 
supplements risk avoidance. 

• Human shortcomings are at least as prominent as technological challenges  
– Exploits through various low-tech means (known as social engineering) are a 
leading cause of security failures. Countermeasures must address policies, 
procedures, and awareness campaigns. 

 6.4. Cybersecurity Testing Approaches 
Of all the quality attributes, security might be the most difficult to “bolt on” or “patch in” 
after substantial software development has already been done. Cybersecurity test 
planning must contribute  to the design and implementation of a system as early as 
possible. It should reinforce secure design and coding best practices, and include a 
risk analysis that is focused on cybersecurity. 
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Risk exists when a threat might take advantage of a vulnerability. Lowering the 
probability of that occurring is known as risk avoidance, and decreasing the 
consequences when it does occur is known as risk mitigation. To go one step further, 
risk mitigation must also be tested by probing the responses that occur when a control 
fails. By revealing otherwise undetected weaknesses, cybersecurity testing can direct 
efforts that support risk avoidance. The goal is to reduce overall risk exposure (and its 
uncertainty) to an acceptable level. 
 
Potential security weaknesses in isolated system components may be investigated by 
static techniques. Manual or automated inspections, such as port scans and code 
scans, can provide early identification of insecure design patterns or coding practices. 
After a completed system is installed in its operational environment, additional 
dynamic security issues will arise (i.e., issues that can only be seen during execution) 
and must also be addressed. 
 
Testing can enhance each stage of a cybersecurity effort as follows:                      

• Identify – Confirm identification, categorization and prioritization of the data and 
processes to be safeguarded (note that an adversary might value these assets 
differently and have different priorities)  

• Protect – Analyze the protection of each asset category with corresponding 
controls that will stop or slow attempts to compromise the system 

• Detect – Demonstrate the ability to detect intrusions and provide timely 
actionable analysis 

• Respond – Exercise the responses and determine how well affected parties are 
notified, damage is minimized, and further access is shut off 

• Recover – Demonstrate the speed and extent of recovering operational status 
and restoring data and confidence 

 6.5. Conducting Cybersecurity Testing 
A testing project should establish terms of engagement that define the nature and 
scope of activities. If a live system is to be tested, it should specify how much notice 
will be given and to whom. All cybersecurity testing must be pre-authorized in writing 
by appropriate management to avoid testers being mistaken for malicious insiders 
(which can carry criminal penalties). 
 
Cybersecurity testing covers the full software development lifecycle, so it will parallel 
and reinforce secure software engineering practices. It may be performed or be a part 
of reviews and audits at key specification, design, implementation, and integration 
stages. It will evaluate the performance of threat modeling and static code analysis. 
 
Cybersecurity testing, like other types of testing, can and should be conducted in two 
different modes: “black-box” - which attends to external system behaviors; and “white-
box” (or clear-box) – which utilizes structural knowledge of the as-built system. In 
black-box testing, an “outsider” will gather information via system reconnaissance. 
They will use that information to craft attacks that can be mimicked in penetration 
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testing to see what they can attack. In white-box testing, the “insider” threat is 
modeled by treating the system’s internals as visible and thus uniquely exploitable.  
 
A wide range of testing approaches are available. One automated black-box 
technique involves fuzzing - inserting random variations of expected input values to 
detect sensitivities that might be exploited. Another mode of testing is derived from the 
practice of military exercises. A designated “red team” of attackers (composed of 
internal or external experts) is pitted against a “blue team” of defenders (drawn from 
internal operations personnel). The exercise may be performed on a facsimile of the 
SUT, or may be a “tabletop” exercise without a real system. 
 
Targeted tests should probe the adequacy of specific controls. These may include: 

• Policy and procedure enforcement 

• System hardening (reducing the attack surface by eliminating as many security 
risks as possible) 

• Access control mechanisms for authentication (who you are), authorization 
(what you can do), and accountability (what did you do) 

• Input validation 

• Encryption 

• Error and exception handling 

• Intrusion detection 

• Malware scanning 

• Resistance to social engineering 
 

 6.6. The Environment of Constant Change 
Best cybersecurity and cybersecurity testing practices may be found in various 
technical guidance documents and consensus standards, as well as through 
professional organizations and educational institutions. “Best practices” may be 
“required practices”, if mandated by government laws. Regulatory requirements may 
also apply to specific financial, medical, transportation, energy or other sectors. In 
such settings, the adequacy of testing would be judged by the extent to which it 
confirmed compliance with applicable mandatory requirements.  
 
New technologies and new applications of existing technologies will continually 
introduce new security concerns. Seemingly stable, long-time tools and applications 
often reveal long-time vulnerabilities under the scrutiny of determined adversaries. 
External laws and regulations, as well as user expectations, change over time too. 
Keeping up-to-date with changes in these requirements and best practices, as well as 
technological advances, should be accomplished through ongoing professional 
development - reading, conversing and attending events with fellow practitioners.  
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7.  Usability Testing – 150 mins. 
Keywords 

accessibility, personas, usability, user experience, user interface, Web Content 
Accessibility Guidelines (WCAG) 

Learning Objectives for Usability Testing    
 

7.1  Introduction 
LO-7.1.a (K2) Explain the difference between efficiency, effectiveness and 

satisfaction in usability testing 

 
7.2  Focusing the Usability Testing 

LO-7.2.a (K1) Recall sources for determining the needs and expectations of 
the users 

LO-7.2.b (K2) Explain why depth or breadth testing would be used 
 

7.3  Usability Test Participants 
LO-7.3.a (K1) Recall the roles of professional testers and end-users in 

usability testing 

 
7.4  Usability Test Planning and Design 

LO-7.4.a (K1) Recall the use of personas in usability testing 
LO-7.4.b (K1) Recall the purpose of user experience evaluation 

 

7.5  Scheduling and Conducting the Tests 
LO-7.5.a (K2) Explain when usability testing should occur in the SDLC 
LO-7.5.b (K2) Describe how usability tests are conducted 
LO-7.5.c (K2) Explain how results are gathered from usability tests 

 
7.6  Standards 

LO-7.6.a (K1) Recall standards that support usability testing 
LO-7.6.b (K1) Recall the components of the usability software quality 

characteristic 
 

7.7  Accessibility 
LO-7.7.a (K1) Recall the meaning and purpose of accessibility testing 
LO-7.7.b (K2) Summarize the common references and standards for 

accessibility testing 
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 7.1. Introduction 
Usability and accessibility of software are important quality characteristics and may 
determine whether or not the software is successful. Usability testing is conducted to 
evaluate how well a system can be used by the target users to accomplish a specified 
goal. Accessibility testing, which is considered a subset of usability testing, is 
conducted to ensure that users of all abilities can successfully use the product.   
 
Efficiency (how much effort is required to accomplish a goal?), effectiveness (is the 
desired result achieved?) and user satisfaction (is the user “happy” with the 
software?) are factors that are often considered during usability testing. In addition,  
proper accessibility testing may be required as part of the overall testing project if 
accessible software is mandated by law. The results of both types of testing can then 
be used to improve the design to better meet the needs of the users. 
 
The timing and scope of usability and accessibility testing can vary widely from project 
to project and, depending on the areas of a product targeted for evaluation, may be 
difficult to schedule and fit into the project lifecycle. Because of this, it is important to 
understand the goals of the tests before starting, consider when the testing should 
occur, and verify that there is adequate time in the schedule to plan the tests, review 
the results, and consider what changes should be made to the product.   

 7.2. Focusing the Usability Testing 
In order to conduct effective usability testing, the tester must understand the needs 
and expectations of the users. This may include gaining an understanding of the 
product itself, as well as the day-to-day activities of the users. This information may be 
gathered from the following sources: 

• Process maps 

• Business cases 

• Use cases 
• Interviews 

• Observation 

• User guides and documentation   

• Expert users or domain experts 
 
Usability testing should concentrate on areas of the software that will be most 
frequently used and are most important to the user. If there is an existing product to 
use for comparison, complex user interfaces and existing features with a history of a 
high number of technical support issues should also be evaluated, to avoid 
perpetuating any problems. 
 
Prioritization is important because the scope of usability testing is often limited by 
project schedule and budget. For new software, where usage is anticipated but not 
known, sampling may be done to allow testing across the overall User Interface (UI). 
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This type of testing will provide information regarding the expected user experience 
and can serve as a breadth-based test.  For areas where extensive usage is 
expected, depth-based testing is appropriate. By approaching the testing with a 
calculated combination of breadth and depth testing, the best coverage can be 
obtained in the shortest period of time. 

 7.3. Usability Test Participants 

In larger organizations, usability is a specialized discipline that leverages usability 
experts with training in psychology and design. Ideally, these experts also have some 
knowledge of software development and at least some exposure to testing. When 
professional testers conduct usability testing, they often work closely with usability 
experts to design tests and check for standard usability characteristics (e.g., 
navigation, number of mouse clicks to accomplish a task, or screen layouts). This type 
of controlled testing should be augmented with testing by real (or potential) users 
because users know what they expect the software to do, what they need it to do and 
how they expect it to work.   
 
For a given project, the usability testers should represent the skill levels and 
knowledge of the actual users. If there will be Subject Matter Experts (SMEs) using 
the software, they will have a different approach than a novice user. Both of these 
user types should be considered during usability testing. 
 
While both types of testing are important, the feedback from real users is sometimes 
given more credence than feedback from professional testers, since the users often 
have actual experience with the product. This is particularly true when an observation 
is subjective (e.g., “the layout is confusing”). 

 7.4. Usability Test Planning and Design 
Test planning is recommended for usability testing, in order to define the test 
approach, identify the goals, and to gain agreement among different stakeholders 
regarding the scope and expectations. With formal usability testing, guidelines for 
observer behavior are usually described in the test plan. Observers may be expected 
to not interfere, to provide help only when requested or to step in when the user 
appears to be getting frustrated. 
 
As part of usability testing, users are often categorized into personas. A persona is a 
representation of a type of user and is often given specific characteristics (such as 
age, gender, profession, etc.). These personas are used during usability design to 
help ensure that the needs and desires of all targeted user sets are met. During 
testing, the activities and reactions of real people can be evaluated against the 
personas that were used during design. 
 
Another aspect of usability testing is user experience (UX) evaluation, which should 
also occur as early as possible. User experience refers to a person’s perceptions of 
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and responses to the software before, during and after usage. For example, happy 
anticipation of the use of the software is a UX characteristic. Brand image and 
presentation of the software contribute to user satisfaction. Like usability, the user 
experience must be designed into the software in order to be achieved in a cost-
effective manner.   

 7.5. Scheduling and Conducting the Tests 

 7.5.1. Early and Continuous Testing 
As with all forms of testing, it is less expensive to correct usability issues when they 
are uncovered early in the SDLC. Early testing is often conducted as the software is 
being designed (sometimes called formative testing as the software is being 
“formed”). This allows users and specialists to review the design before it is coded. It 
may be done with written descriptions, wireframes (low fidelity) or prototypes (high 
fidelity).  
  
Ideally, usability testing is a continuous activity, performed frequently during software 
design and development. This will provide timely feedback and will help influence the 
design as the project progresses. In an Agile methodology, the product owner 
normally assists with usability testing during iteration testing to ensure that the product 
meets expectations. 

 7.5.2. Conducting the Usability Test 
Formal usability tests are typically conducted in a usability lab, which may be 
equipped with video and audio recording devices, two-way mirrors and a separate 
seating area for observers. A formal lab may have software installed which tracks eye 
movements of the subjects and records the interactions of the subject with the 
product. Less formal testing may be conducted in an office setting or even a test lab 
environment. Ideally, the tests are conducted in an environment that closely mimics 
the user’s work environment. This will provide a more realistic experience (e.g., 
lighting, noise, and distractions) and will help the user to better evaluate the software. 
 
Usability tests are sometimes conducted by having the subjects perform tasks that 
have been designed in advance by a usability tester. Testing may also be conducted 
by assigning general tasks to the users and having them figure out how to accomplish 
those tasks on their own. User manuals and process documents may be used as 
guidelines for testing and the testing is sometimes used to review the correctness of 
the documents. 
 
During usability tests, subjects generally are asked to vocalize what they are thinking 
while they are working through their tasks (i.e., think out loud), express any confusion 
that they may have and talk about what they are doing. If observers are present in the 
room during the usability tests and are required to be silent and passive, they can give 
no help or feedback to the participants. This is an important consideration as it is 
sometimes difficult for the observers to avoid influencing the tests. 
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 7.5.3. Gathering Results 
Feedback from the tests are usually gathered in two ways:  defect reports and 
questionnaires/surveys. 
 
Where usability or user interface defects are identified, the normal defect lifecycle 
should be followed, with particular attention paid to maintaining consistency. For 
example, if users object to the way a button is displayed, all buttons should be 
reviewed to determine if broader changes are needed.   
 
Questionnaires and surveys are used to gather feedback regarding the effectiveness 
and efficiency of the software and the user’s satisfaction with their experience. These 
surveys may also extend into the UX areas (e.g., emotions, perceptions, preferences, 
image).  

 7.6. Standards 
There are several international standards that deal with usability.  The following are 
commonly used: 
 
ISO 9241-210 discusses human-centered design. This is based on understanding the 
expected use, specifying requirements, producing solutions, evaluating the solutions 
and eventually designing the best solution to meet the usability requirements. 
 
ISO 25010 describes the software quality characteristic called usability. This breaks 
usability into a set of characteristics as follows: 

• Appropriateness recognition – Can the user determine if the software is 
appropriate for their needs? 

• Learnability – Can the user figure out how to accomplish a task and are they 
able to apply that knowledge the next time they want to accomplish the same or 
a similar task? 

• Operability – Is the software easy for the user to operate and control? 

• User error protection – Does the software help prevent the user from making 
errors? 

• User interface aesthetics – How pleasing or attractive is the software to the 
user? 

• Accessibility – Can the software be used by people with a wide range of 
capabilities? 

 
These two standards help to guide usability design, as well as usability testing. 

 7.7. Accessibility 
Accessibility testing is considered a subset of usability testing. Accessibility is the 
degree to which a component or system can be used by people with the widest range 
of characteristics and capabilities to achieve a specific goal in a specified context of 
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use. While sometimes targeted at specific disabilities, such as color blindness or 
hearing impairment, accessibility has generally become a broadened concept to 
ensure that software works for everyone, with or without disabilities. 
 
Accessibility compliance requirements may drive accessibility testing goals and 
methods. It is important to clearly identify any pertinent legislation or regulations that 
apply, such as the ADA (Americans with Disabilities Act) and Section 508, before 
planning the testing, as specific goals may be defined in the regulations. Section 508 
Compliance Testing, an amendment to the United States Workforce Rehabilitation Act 
of 1973, is a federal law mandating that all electronic and information technology 
developed, procured, maintained, or used by the federal government be accessible to 
people with disabilities. 
 
An internationally used reference for accessibility testing is the Web Content 
Accessibility Guidelines (WCAG). These are widely used guidelines that were 
published by the Web Accessibility Initiative (WAI) or the World Wide Web Consortium 
(W3C). There are three conformance levels defined in WCAG: A, AA, and AAA, with 
AAA being the most difficult to achieve [WCAG].  
  
Accessibility testing tools are available and can be used to quickly scan code to 
identify compliance issues. These tools will look for such items as text descriptions for 
all graphic items, usage of colors and font sizing. The tools are frequently updated 
and provide coverage for different accessibility areas. Research is needed to find the 
best tool for a particular situation. Accessibility tends to be a specific area of testing 
expertise because it requires a deep understanding of the regulatory requirements 
and the tools that will determine conformance to the standards. 
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 8. Testing Connected Devices  
– 180 mins. 
Keywords 

connected devices, emulators, lightweight testing, simulators 

Learning Objectives for Testing Connected Devices    

 
8.1  Introduction 

None 

 
8.2  Connected Devices 

LO-8.2.a (K2) Understand the challenges with connected device testing 
 

8.3  Environments and Tools 
LO-8.3.a (K2) Understand the differences between simulators and emulators, 

and which is appropriate for a given situation 
LO-8.3.b (K1) Recall how test automation tools can assist in connected device 

testing 

 
8.4  Quality Characteristics 

LO-8.4.a (K1) Recall why understanding user expectations is particularly 
challenging for connected devices 

LO-8.4.b (K1) Recall why requirements for quality characteristics must be 
identified early in the lifecycle 

LO-8.4.c (K2) Explain why usability is an important quality characteristic to 
consider in connected device testing 

LO-8.4.d (K2) Explain why performance is an important quality characteristic 
to consider in connected device testing 

LO-8.4.e (K2) Explain why security is an important quality characteristic to 
consider in connected device testing 

LO-8.4.f (K2) Explain why interoperability is an important quality characteristic 
to consider in connected device testing 

LO-8.4.g (K2) Explain why accuracy is an important quality characteristic to 
consider in connected device testing 

LO-8.4.h (K2) Explain why reliability is an important quality characteristic to 
consider in connected device testing 

 
8.5  Lightweight Testing 
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LO-8.5.a (K2) Describe how lightweight testing can be advantageous in 
connected device testing 

 

 8.1. Introduction 
The world of connected devices is expanding. What started with mobile phones soon 
became smart phones and tablets, then blossomed into the Internet of Things (IoT). 
As software has adapted to be quicker and smaller, testing must also adapt to be 
quick and lightweight. That said, good testing practices still apply and quality 
characteristics are still important to the users. However, it is important to remember 
that users have expectations that their mobile applications and IoT devices will “just 
work”. 

 8.2. Connected Devices 
Devices in the connected world vary from smart phones to refrigerators, from tiny 
humidity detectors to cars. Anything that is capable of supporting an Internet enabled 
component is capable of joining the IoT. The same software may be supported on a 
variety of devices and operating systems (OSs), making compatibility testing more 
challenging and future-proofing difficult. As the industry leaps forward, backward 
compatibility is often receiving less emphasis when actually more is needed. There is 
an expectation from users not to be forced to upgrade in order to take advantage of 
new features and applications.   
 
Testers can no longer expect to have access to all the devices that will use the 
software under test.  Selecting a representative sample set is a critical part of defining 
test coverage and risk mitigation. Just because the software runs on a refrigerator 
allowing the user to increase or decrease the temperature remotely does not mean 
that all models of refrigerators need to be tested. It is important for testers to 
understand what exactly is to be tested. Is it the device that provides the connectivity? 
Is it the response of the target device? Is it the communication between the two? 
Realistically, it is all of these, but if all refrigerators use the same communication 
interface with the Internet device, then testing one may be sufficient (i.e., applying 
equivalence partitioning).   

 8.3. Environments and Tools 

The proliferation of devices supported by Internet appliances has resulted in a 
plethora of tools and simulators/emulators that can be used for testing. This reduces 
the need for having a large set of devices available for testing and can greatly speed 
up manual testing and the development of test automation. Device labs are available 
for popular devices, such as smart phones, and new simulators/emulators  are 
constantly being created. It is always good practice to verify the results from a 
simulator/emulator against a real device, but the majority of the testing does not 
require the more expensive real devices. 
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Simulators generally provide a standard response to various inputs and “simulate” the 
interaction with a real device at the software level. Emulators go a step further and 
“emulate” the responses of the hardware device as well as the software running on 
that device. For example, testing an application’s interactions with a smart phone’s 
gyroscope requires an emulator, whereas testing interaction with the device’s email 
application can be done with a simulator. Similarly, simulators in the form of service 
virtualization can be used to simulate a web service’s interaction with an application. 
 
Test automation tools are quickly adapting to the IoT and mobile device market. Many 
of these tools will interact with simulators and, sometimes, even include their own 
simulators. Simulators for compatibility testing, such as cross-device or even cross-
browser, are commonly supported by test automation tools. The tendency is for these 
automation tools to be more lightweight in features than the traditional client/server or 
web services tools. Cost is always a consideration and the open source market 
quickly adapts to the needs for new and purpose-built tools. 
 
Even the best simulators/emulators cannot simulate/emulate everything. There are 
user actions, such as a complex set of gestures, that must be tested on a real device. 
It is important for the tester to determine which tests are best conducted with which 
environment. Generally a mix of simulators/emulators and real devices will yield the 
most accurate result for the least cost. 

 8.4. Quality Characteristics 
While quality characteristic testing is important for all types of software, there are 
some unique needs for quality characteristic assessment when dealing with 
connected devices. One of the most difficult aspects of connected device testing is 
defining the users’ expectations. The user group for an application can be quite large 
and the expectations may vary dramatically, even within the target users. It is 
particularly important that the requirements for the quality characteristics are clearly 
defined in a measurable way in the requirements or acceptance criteria for the 
software.  With all quality criteria, there is a range of “acceptable”. Defining and 
documenting this range early in a product’s lifecycle is particularly important for 
connected devices. By defining the criteria for the quality characteristics at the 
beginning of the project, all architecture, design and implementation decisions can be 
made to align with and fulfill those objectives.   
 
While all quality characteristics are important, the following characteristics are 
particularly important with connected devices: 

• Usability 

• Performance 

• Security 

• Interoperability 
• Accuracy 

• Reliability 
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 8.4.1. Usability 
As connected devices become more integral to modern life, users expect “good” 
usability and learnability. Particularly for downloaded applications for smartphones, 
users expect software to be attractive, inviting, easy to use, easy to understand, and 
enjoyable. Users are becoming less patient with software that does not provide a 
good user experience. This can result in a product that is functionally sound being 
rejected by the users because it does not provide the expected feedback (e.g., 
prompts and sounds). Of course, being functionally sound is still the basic building 
block of software quality, but the ease with which a new user can and wants to work 
with an application often determines the market share. See Section 7 for more about 
usability. 

 8.4.2. Performance 
Performance criteria tend to be loosely defined and are often identified when a 
product does not meet expectations.  While this is true for any software product, it is 
apparent for applications for connected devices which may have limited capability 
(memory, bandwidth). Ideally, the performance criteria should be defined and 
captured early in the requirements phases of a project. Defining these criteria, setting 
up the proper personas and benchmarks, and testing to ensure the criteria are met on 
the target device, are critical for the success of a connected product. It might be 
acceptable for a refrigerator to be slow to respond to a request to decrease 
temperature, but it is unacceptable for a GPS-based guidance application on a smart 
phone to not respond in time for a driver to make a turn.  
 
Another variable with connected devices is the possibility of a lack of connectivity. 
This can significantly impact both functionality and performance. A poor connection 
can result in poor performance. A product may not be able to control the quality of the 
connection, but it can control its response to poor, intermittent or non-existent 
connections. See Section 5 for more about performance. 

 8.4.3. Security 
Connected devices are sometimes used for safety-critical applications as well as for 
financial transactions. Cybersecurity testing is difficult with the shortened development 
cycles of connected devices, but it is a critical component of a quality product. 
Architecting, developing, and testing for security must occur throughout the 
development lifecycle, as there will rarely be enough time at the end of development 
for thorough cybersecurity testing (and any necessary corrections/changes).   
 
It is important to understand the expected and potential usage of an application 
running on a connected device. Is the GPS-based guidance application used to get to 
the mall or to direct ambulances to emergency scenes? Is a web-monitored intruder 
alarm used to guard the refrigerator from marauding teenagers or to protect a 
pharmacy? Seemingly simple devices can easily be used in safety-critical situations, 
necessitating the highest levels of security testing. Like quality, security must be built 
into the product right from the start. 
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Connected devices have unique security risks. For example, an attacker can gain 
access through man-in-the-middle attacks by exploiting Bluetooth vulnerabilities of the 
device. Using connected devices with public Wi-Fi hotspots can lead to security 
vulnerabilities that would not be experienced on a controlled and protected network. 
Because mobile devices are easily carried with a person, they are also easily lost or 
stolen, which can allow personal information to fall into the hands of a criminal. 
Connected medical devices present a unique security risk as they have been 
compromised in past Wi-Fi cyberattacks to gain access to the larger network in a 
hospital. The list goes on and on. In general, security requirements for connected 
devices are always expanding, particularly as new vulnerabilities are discovered. 
 
See Section 6 for more about cybersecurity. 

 8.4.4. Interoperability 
Connected devices offer some unique challenges for interoperability. Software is often 
developed to work on multiple operating systems and a range of devices. For 
example, a banking application may be intended for use on a wide range of smart 
phones and tablets. The portability of an application to different devices, the ability of 
an application to interoperate with other software and the compatibility of the software 
across different browsers and operating systems are often lumped into the general 
category of interoperability.   
 
From a testing perspective, this gives a nearly infinite number of combinations to test 
and those combinations continue to evolve rapidly. Using combinatorial testing 
techniques can bring this potential set of test targets down to a manageable number. 
This type of testing tends to be pushed to the end of the testing cycles, when there is 
enough functionality to support the testing.   
 
The architecture of the product often determines its interoperability capabilities. If the 
architecture is limiting, the capability of the end product will also be limited.   

 8.4.5. Accuracy 
Accuracy testing targets the ability of the software to provide accurate results for a 
given set of inputs. Users expect software to be accurate, but there are specific 
considerations for connected device software primarily because the usage can be so 
varied. A simple humidity detector developed on a Raspberry Pi may be intended for 
use by plant enthusiasts to ensure proper watering levels. However, this same 
detector could be used to ensure an asthmatic child has the proper humidity in their 
room air.  Because the use of a product may not be controllable, accuracy must be 
ensured for any possible safety-critical usage. This tends to push most of the 
connected device testing into the safety-critical arena, unless a product can be 
specifically excluded from a safety-critical use.   
 
Testing in a safety-critical environment requires higher levels of documentation and 
due diligence to protect the developing organization from potential legal action if 
something should go awry. This is an area that is open to debate, but from a testing 
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standpoint, more thorough and better documented testing will help mitigate 
deployment risk and may help meet regulatory and industry standards. This is 
particularly challenging in the short cycles of connected device products and is why 
lightweight testing approaches are critical. 

 8.4.6. Reliability 
As with the higher expectations for usability and performance, users expect complete 
reliability from their connected devices and software. No one expects to reboot their 
smart phone and much less their refrigerator. Realistic or not, this is the expectation 
that must be met in order to capture and retain users.  Testing for reliability is difficult 
and requires test environments that are representative and stable. It also requires 
time, as reliability tests usually require applications to be observed under continual 
use for a given length of time to determine the mean time between failure (MTBF). 
The time required for this testing potentially conflicts with the goal of being quick to 
market.   
 
Reliability cannot be tested into an application – it must be built in. This means that 
reliability targets must be set early and reviewed frequently. Reliability testing in the 
connected device area tends to be limited to discovering whether there are significant 
problems. More subtle problems or problems that only appear over long usage tend to 
be discovered in production. Perhaps more than any other area, reliability assurance 
is a development activity more than a testing activity. 

 8.5. Lightweight Testing 
A common theme has emerged in this section – software has to be built right because 
there is no time to fix it later. This means the requirements for quality characteristics 
must be defined and understood by the development and testing teams. In lightweight 
testing models, such as Agile, the whole team approach helps everyone to review and 
understand these requirements from the beginning and to revisit and validate 
fulfillment of the requirements throughout development. Any lightweight methodology 
is dependent on the engagement of the BAs, product owners, developers and testers 
throughout the lifecycle to ensure that the product is reviewed and tested as it is being 
built. Testing cannot be pushed to the end of the process if the schedule time is to be 
reduced and quality criteria met. 
 
Testing documentation must be as lightweight as possible in this environment. This 
means that detailed test cases are probably not needed, but repeatable tests are. 
Testing from decision tables and checklists rather than from step-by-step test cases is 
a good way to test the implementation of business processes and workflows. The 
testing techniques can be well-applied to reduce testing documentation while 
increasing coverage and repeatability. Exploratory testing can help fill the gaps 
between the testing techniques but should not be the only form of testing, as 
repeatability tends to be compromised or lost. To adapt to this changing environment, 
testers need to document the minimum needed for repeatability and to let risk and 
coverage goals guide the testing. 
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 9. DevOps – 200 mins. 
Keywords 
behavior-driven development, build, commit, continuous delivery, continuous 
deployment, continuous integration, continuous monitoring, continuous testing, 
DevOps, DevOps toolchain, infrastructure as code, test-driven development 

Learning Objectives for DevOps    
 

9.1  Introduction 
LO-9.1.a (K1) Recall the purpose of DevOps 
LO-9.1.b (K1) Recall the benefits of DevOps 

 
9.2  The DevOps Pipeline 

LO-9.2.a (K2) Compare the differences between Continuous Integration, 
Continuous Delivery and Continuous Deployment 

LO-9.2.b (K2) Explain the concept of Continuous Testing 
LO-9.2.c (K1) Recall the purpose of Continuous Monitoring 
LO-9.2.d (K2) Describe the full DevOps pipeline 

 

9.3  DevOps Testing 
LO-9.3.a (K1) Recall the concept of testing during planning 
LO-9.3.b (K2) Understand the difference between TDD and BDD 
LO-9.3.c (K2) Understand how unit testing and integration testing are applied 

in DevOps 
LO-9.3.d (K2) Describe the types of testing that occur during staging and 

deployment 

 
9.4  The Role of Automation in DevOps Testing 

LO-9.4.a (K2) Understand the relationship between continuous testing and 
automation 

LO-9.4.b (K2) Describe infrastructure as code 
LO-9.4.c (K2) Explain the DevOps toolchain 

 
 

 9.1. Introduction 
DevOps bridges the gap between development and operations by bringing the two 
teams together for the entire software lifecycle, from development to delivery. DevOps 
is a cultural shift focused on building and operating at high velocity. It is an approach 
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that involves activities that are “continuous”:  continuous development, continuous 
integration, continuous testing, continuous deployment, continuous delivery, and 
continuous monitoring.  
 
Development roles in DevOps include everybody who is involved in making the 
software and everyone who is involved in running and maintaining production. 
DevOps asks people working in the development and operations teams to work 
together, from the beginning of a software development project until it is delivered, 
breaking down the walls that stand between the different departments. 
 
The benefits of DevOps include:  

• Assessing quality at every stage of development and operation, resulting in a 
high-quality product with fewer defects 

• Releasing small increments frequently – If a good DevOps pipeline is set up, it 
helps to release the product more often, in small increments, which provides 
early and frequent feedback 

• On-time (and possibly lower cost of) delivery, in part due to a better delivery 
process 

• Reduction in vendor and third-party issues 

• Faster time to market 
There are some misconceptions about DevOps. For example, DevOps does not 
eliminate any roles from development or operations. DevOps is not a separate team – 
it is a culture shift. DevOps is not a tool, nor is it the use of fancy tools without a 
defined process. 

 9.2. The DevOps Pipeline 

A DevOps pipeline is set up in every project to aid all the continuous activities. 
 
Continuous Integration (CI): Continuous integration is the practice of merging all 
developers’ working code into a main branch of the codebase in a shared repository 
several times a day. The developers’ changes (commits) are validated by creating a 
build and running automated tests against the build. Continuous integration ensures 
that the application does not break whenever new commits are integrated into the 
main branch of the codebase. If problems are introduced with the new code, they are 
quickly identified and resolved. 
 
Continuous Delivery: Continuous delivery builds on the CI process in which teams 
produce software in short cycles, ensuring that software can be reliably released at 
any time. In addition to having automated builds and tests, Continuous Delivery 
requires an automated release process and a way to easily deploy applications at any 
time.  
 
Continuous Deployment (CD): Continuous Deployment (CD) takes the continuous 
delivery process one step further. A change that passes all stages of the DevOps 
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pipeline is released to the customer. The deployment trigger is automatic; therefore, 
the whole release process is automated.  
 
Note that continuous integration (CI) is part of continuous delivery and continuous 
deployment. Continuous deployment is continuous delivery when the releases happen 
automatically. 
 
Continuous Testing: Continuous testing is the repeated execution of tests against a 
codebase. It is the quality gate throughout the DevOps pipeline and increases 
confidence in the product. The success of continuous delivery or deployment relies on 
continuous testing. At every stage of the DevOps pipeline, continuous testing ensures 
that what is being delivered through a stage of the DevOps pipeline is correct and 
good enough to progress to the next stage of the pipeline. 
 
For continuous testing to succeed, the siloed testing and operations teams should be 
integrated with the development team. Testing should not be a separate activity. 
Instead, it should be incorporated as much as possible into the DevOps pipeline. For 
example, performance and cybersecurity testing should not be an independent activity 
but should be incorporated into the pipeline. The DevOps pipeline should not be 
bypassed or blocked for a long time. Use of drivers and stubs are highly encouraged 
for testing any “what-if” scenarios and dependencies. 
 
Continuous Monitoring: Continuous monitoring allows the DevOps team to 
constantly monitor the application in a production environment to ensure that the 
application is performing at an optimal level and the environment is stable. Continuous 
monitoring helps in diagnosing and fixing errors as soon as they are found.  

*** 
Having described all the “continuous activities” in DevOps, the following is a simple 
DevOps pipeline that incorporates all these activities. In its simplest form, a DevOps 
pipeline can have the following stages: 

Plan ! Code ! Build ! Staging ! Deploy 
 
The planning stage in DevOps is a pre-CI/CD stage where requirements are gathered, 
tested, and polished. Once a set of well-tested requirements is agreed upon, 
developers start coding those requirements. As they code, developers commit their 
changes to a source control repository. Each developer’s source code must be 
accompanied by successfully executed unit tests. The commits trigger a build. Once 
all the code compiles properly and all unit tests pass, the build is considered 
successful.  If any tests fail, the build is unsuccessful and the commit will roll back to a 
previous successful commit.  This cycle repeats for the next commit. 
 
This continuous integration process ensures that passing tests accompany every 
piece of code written by the developers, providing testing and code coverage at the 
unit level. The tested and verified build then moves to a staging environment that 
mimics the production environment. This is where integration tests, as well as other 
necessary tests, such as functional, non-functional, performance, security, user 
acceptance and exploratory tests are executed. 
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Once the application is thoroughly tested in the staging environment, it is ready to be 
deployed. Depending on the DevOps pipeline, it can be deployed to a pre-production 
environment, where the operations team may run more tests, or it can be deployed to 
the customers.  

 9.3. DevOps Testing 

The way to approach testing in DevOps is to break down the pipeline into a few parts 
and apply different types of testing in each part. A few of those testing types are 
described here (this is not a comprehensive list). The simple DevOps pipeline shown 
above is used as a guide. 
 
Testing during planning: This is pre-CI/CD testing. Testing during the planning 
stage means gathering requirements accurately and making sure they are testable by 
creating proper acceptance criteria. Static testing techniques, such as reviews and 
static analysis, should be used to ensure that defects from work products (especially 
requirements) are eliminated as much as possible.  
 
Testing during coding and building: During this stage of the pipeline, unit and 
integration tests are written and executed.  
 
Unit tests are developers’ tests where developers are responsible for making sure that 
each unit being built has one or more unit tests associated with it. These tests are 
automated and are an essential foundation for all other tests. They are simple tests, 
easy to write, and fast to execute, but cover all significant paths through the code.  
 
A common way to approach writing unit tests that ensure the testability of the code is 
to write the unit test first, then write the code to make the test pass, and finally doing 
some refactoring around that. This process is called Test-Driven Development (TDD). 
TDD ensures coverage around the code that is being written at the unit level. This 
supports continuous integration because as the developers commit their code and 
their unit tests, the CI system will flag any failures or missing tests. The pipeline will 
stop at this point until the tests pass, ensuring that only tested code will proceed. 
 
TDD works very well at the unit level, but the tests still carry the developer’s 
perspective. There is a need to develop tests based on other stakeholders’ 
perspectives. Therefore, a better approach to testing during coding and building is to 
use Behavior-Driven Development (BDD). BDD uses the underlying concept of TDD, 
but instead of thinking about writing a failed test, BDD starts with writing a failed 
feature test. It then follows the same process as TDD to write code to pass each step 
of the feature test. This way, the feature is traced all the way up to a requirement.  
 
During the coding and building stages of the DevOps pipeline, static analyzers may be 
used for code reviews before committing the code as part of a build. Peer reviews 
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should also be used for reviewing the code to ensure good and consistent coding 
practices within the team. 
 
Once unit testing is done at this stage, integration testing should be carried out to 
make sure all developer code is successfully integrated and an integration build is 
created. The purpose of integration testing is to ensure that there are no issues with 
combining the different developers’ units. The integration build should pass all unit 
and integration tests. 
 
Testing during staging: A critical factor to remember for testing during staging is that 
the environment in which testing is to take place must match the production 
environment. Once there is a stable build, the build can be tested in a staging 
environment using functional testing (does the system do “what” it should) and non-
functional testing (“how well” does the system provide the functionality), such as 
performance, usability and other types of testing including security.  
 
Performance testing is conducted to identify bottlenecks and any performance 
degradation within the system. It is done by putting demands on an application under 
normal and peak load conditions. It measures attributes such as response times, 
throughput rates, resource-utilization, and identifies the application’s breaking point. 
 
One of the main reasons that performance testing is often neglected is because 
performance tests can take a long time to run and can be resource intensive. DevOps 
and its pipeline allow the execution of performance tests early. Some performance 
tests can be run in parallel with unit and integration tests. As functional tests are 
executed in a staging environment, performance tests for the whole system can be 
run in parallel. 
 
There is a type of DevOps called DevSecOps, where cybersecurity testing is no 
longer considered as an afterthought but is an integral part of the DevOps pipeline. 
Cybersecurity testing is specialized testing and, therefore, a partnership with security 
experts is needed to perform such types of testing in the pipeline. In DevSecOps, 
security tools are identified and integrated into the DevOps toolchain and the results 
are made visible to the whole team.  
 
Testing during deployment: At this stage of the DevOps pipeline, smoke tests for 
the whole application are performed to ensure that the application runs correctly. 
Every release also needs to pass acceptance tests on deployments conducted by the 
operations team. 

 9.4. The Role of Automation in DevOps Testing 
Automation plays a significant role in DevOps and DevOps testing. The Agile 
movement embraced automation of unit testing, acceptance testing and continuous 
integration. DevOps ties these with automation of the deployment process, eliminating 
the boundary between developer and operations automation. Continuous testing 
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would not be possible without automation; it would not be an efficient process if a 
large number of test cases were run manually in the DevOps pipeline. Moreover, 
testing is not the only place where automation is needed in DevOps. 
 
Infrastructure as code: In DevOps, CI/CD requires the automatic deployment of 
changes to the test and production environments, where these environments are 
launched automatically as needed. CI/CD also requires an automated way to push the 
latest build to these environments and, eventually, to the customer’s environment. 
Infrastructure as code includes the process and technology needed to provision and 
manage environments (physical and/or virtual) through scripts.  
 
Treating infrastructure as code is a key element in DevOps. It benefits both the 
development and the operations team. Infrastructure as code allows operations teams 
to get involved in the development process from the beginning. Developers can gain a 
better understanding of the supporting infrastructure because they can be involved in 
specifying and understanding configurations for servers, networking, storage, and so 
on. 
 
The DevOps toolchain: The ultimate goal of DevOps is to streamline development 
with operations. DevOps does not necessarily require tools to do so, and DevOps is 
not defined by its tools. However, for most organizations, tools play an important role 
in automating tasks and ensuring processes run as efficiently as possible.   
 
A DevOps toolchain is a combination of tools that help in development, integration, 
testing, deployment, delivery, and management throughout the SDLC in a DevOps 
environment. The DevOps toolchain should include tools from different categories, 
such as: 

• Project planning and management tools 

• Requirements engineering tools 
• Configuration management and provisioning tools 

• Source code scanning (for quality and security) tools 

• Build automation and continuous integration tools 

• Functional and non-functional testing tools 

• Deployment tools 

• Release orchestration tools 

• Application and infrastructure monitoring and performance tools 
It is critical to design a DevOps toolchain that is adaptable to accommodate both 
changes in team preference, application architecture, quality processes and other 
technology shifts. In order to maintain an effective DevOps pipeline, DevOps teams 
should include the right choice of tools as part of their DevOps toolchain. 
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