

Version 2020

Testing Essentials, Version 2020 2

© Association for Testing and Software Quality Assurance

 Table of Contents

Table of Contents ... 2	
0.	 Introduction to this Syllabus .. 5	

0.1.	 Purpose of this Document ... 5	
0.2	 What is Essential? .. 5	
0.3	 Syllabus Structure .. 6	
0.4	 Examinable Learning Objectives .. 6	

1. 	 Introduction to Software Testing – 60 mins. ... 8	
1.1.	 What is Software Testing .. 8	

1.1.1.	 Requirements ... 8	
1.1.2.	 Fit for Purpose ... 9	
1.1.3.	 Risk .. 9	
1.1.4. 	 Finding Defects .. 9	

1.2.	 A Brief History ... 10	
1.3.	 Structured Testing ... 10	
1.4.	 The Role of a Tester .. 11	

2.	 Test Approaches – 145 mins. ... 12	
2.1.	 Introduction .. 13	
2.2.	 Testing Levels ... 13	

2.2.1.	 Unit Testing .. 14	
2.2.2.	 Integration Testing ... 14	
2.2.3.	 System Testing .. 15	
2.2.4.	 Acceptance Testing ... 15	

2.3.	 Software Development Lifecycles ... 16	
2.3.1.	 Sequential Models ... 16	
2.3.2.	 Iterative Models .. 17	
2.3.3.	 Hybrid Models .. 18	

2.4.	 Product Type ... 19	
2.5.	 Documentation Requirements and Availability .. 19	
2.6.	 Risk ... 21	
2.7.	 Schedule and Budget .. 22	
2.8.	 Maturity and Ability of the Team .. 22	

3.	 Testing Techniques – 215 mins .. 24	
3.1.	 Introduction .. 25	
3.2	 Partitions and Boundaries .. 25	

3.2.1	 Equivalence Partitioning .. 25	
3.2.2.	 Boundary Value Analysis ... 26	

3.3.	 Decision Tables ... 27	
3.4.	 Combinatorial .. 28	
3.5.	 Exploratory Testing ... 29	
3.6.	 API Testing .. 30	
3.7.	 Picking the Best Technique ... 31	

4.	 Test Automation – 200 mins. .. 32	

Testing Essentials, Version 2020 3

© Association for Testing and Software Quality Assurance

4.1.	 Introduction .. 33	
4.2.	 Selecting Test Automation Candidates ... 33	
4.3.	 Building Maintainable Test Automation Software 34	

4.3.1.	 Deciding on Data-Driven vs. Keyword-Driven Approach 34	
4.3.2.	 Implementing the Framework .. 35	
4.3.3.	 Building Continuously .. 35	

4.4.	 Benefits of Automated Testing .. 35	
4.5.	 Test Automation Risks .. 36	
4.6.	 Test Automation Success Factors ... 37	

4.6.1.	 Find the Right Project .. 37	
4.6.2.	 Build Automatability into the System .. 37	
4.6.3.	 Show Early Success .. 37	
4.6.4.	 Review the Plan ... 38	
4.6.5.	 Define Ownership .. 38	

4.7.	 Test Automation Tools .. 38	
5.	 Performance Testing – 200 mins. ... 40	

5.1.	 Introduction .. 41	
5.2.	 The Purpose of Performance Testing ... 41	

5.2.1.	 Defining Performance Requirements and
Getting Stakeholder Agreement ... 41	

5.2.2.	 Aligning Performance Testing in the SDLC 42	
5.3.	 Performance Testing Risks, Benefits, and Challenges 42	

5.3.1.	 Risks .. 43	
5.3.2.	 Benefits .. 43	

5.4.	 Performance Testing Approach .. 44	
5.4.1.	 Defining the Test Plan .. 44	
5.4.2.	 Defining the Test .. 45	

5.5.	 Conducting Performance Testing .. 46	
5.5.1	 Test Preparation .. 46	
5.5.2.	 Test Execution ... 46	
5.5.3.	 Test Evaluation .. 47	
5.5.4.	 Test Reporting ... 47	

5.6.	 Performance Test and Analysis Tools .. 48	
5.6.1.	 Why Tools are Essential for Performance Testing 48	
5.6.2.	 Tool Challenges ... 48	

6.	 Cybersecurity Testing – 200 mins. ... 50	
6.1.	 Introduction .. 51	
6.2.	 The Purpose of Cybersecurity Testing .. 51	
6.3.	 Cybersecurity Differences ... 52	
6.4.	 Cybersecurity Testing Approaches ... 52	
6.5.	 Conducting Cybersecurity Testing .. 53	
6.6.	 The Environment of Constant Change .. 54	

7.	 Usability Testing – 150 mins. ... 55	
7.1.	 Introduction .. 56	
7.2.	 Focusing the Usability Testing .. 56	
7.3.	 Usability Test Participants ... 57	
7.4.	 Usability Test Planning and Design .. 57	

Testing Essentials, Version 2020 4

© Association for Testing and Software Quality Assurance

7.5.	 Scheduling and Conducting the Tests .. 58	
7.5.1.	 Early and Continuous Testing .. 58	
7.5.2.	 Conducting the Usability Test .. 58	
7.5.3.	 Gathering Results .. 59	

7.6.	 Standards .. 59	
7.7.	 Accessibility ... 59	

8.	 Testing Connected Devices – 180 mins. ... 61	
8.1.	 Introduction .. 62	
8.2.	 Connected Devices ... 62	
8.3.	 Environments and Tools .. 62	
8.4.	 Quality Characteristics .. 63	

8.4.1.	 Usability ... 64	
8.4.2.	 Performance .. 64	
8.4.3.	 Security .. 64	
8.4.4.	 Interoperability ... 65	
8.4.5.	 Accuracy .. 65	
8.4.6.	 Reliability .. 66	

8.5.	 Lightweight Testing ... 66	
9.	 DevOps – 200 mins. ... 68	

9.1.	 Introduction .. 68	
9.2.	 The DevOps Pipeline .. 69	
9.3.	 DevOps Testing ... 71	
9.4.	 The Role of Automation in DevOps Testing .. 72	

10.	 References ... 75	
10.1.	 ISO/IEC/IEEE Standards ... 75	
10.2.	 Trademarks ... 75	
10.3.	 Books .. 75	
10.4.	 Other References .. 75	

Testing Essentials, Version 2020 5

© Association for Testing and Software Quality Assurance

 0. Introduction to this Syllabus
 0.1. Purpose of this Document

This syllabus forms the basis of the AT*SQA certification for Testing Essentials.
AT*SQA is an International Standards Organization (ISO) compliant certification body
for software testers. AT*SQA provides this syllabus as follows:

1. To training providers - to produce courseware and determine appropriate
teaching methods.

2. To certification candidates - to prepare for the exam (as part of a training
course or independently).

3. To the international software and systems engineering community - to
advance the profession of software and systems testing and as a basis for
books and articles.

AT*SQA may allow other entities to use this syllabus for other purposes, provided
they seek and obtain prior written permission.

 0.2 What is Essential?
The Information Technology (IT) world changes almost continuously as new
technologies and techniques are adopted. Software testers (whether by title or in
practice) must adapt quickly and be able to leverage their skills to meet new
challenges. However, the essential skills and knowledge remain the same, serving as
core understanding to which new information can be added. For the sake of
readability, the term “software tester” will be used to refer to anyone who is testing
software, regardless of their formal role.

This syllabus focuses on the essential areas of software testing that are required,
regardless of the technology, lifecycle or tools in use. Some projects may use more or
less of these skill areas, but all software testers need to understand and master this
core skill set.

As the name indicates, this syllabus covers the “essentials”. This syllabus should be
considered a springboard for additional certifications and knowledge areas. As a part
of AT*SQA’s ISO compliant offerings, the certification must be kept current with
additional learning completed within the defined timespan. For more details, see
AT*SQA’s website. This helps software testers to continue to expand their knowledge
and marketability and acknowledges the very real need for continuing education in the
software testing industry.

Testing Essentials, Version 2020 6

© Association for Testing and Software Quality Assurance

 0.3 Syllabus Structure
This syllabus has been constructed to be tool and methodology agnostic. In places
where different approaches are needed based on different lifecycles, those areas are
highlighted with appropriate recommendations for tailoring the approach.

The intended target audience for this syllabus is anyone conducting software testing,
whether or not they have the title of software tester. This includes Scrum team
members, developers, Business Analysts (BAs), software specialists and anyone
interested in learning the important aspects of software testing.

This syllabus is intended to be read in full, but if the reader is interested only in a
specific area, each area can be read independently. It is recommended that the Test
Approach and Testing Techniques sections (Sections 2 and 3, respectively) are
considered compulsory reading, as these are generally applicable to any of the
specialist areas of testing and provide a good background to general testing practices.

 0.4 Examinable Learning Objectives
Each chapter notes the time that should be invested in learning and practicing the
concepts discussed in that chapter. This information should be used as a guideline
when creating training materials or for an individual conducting self-study.

All identified key terms are examinable, either individually or by use within an exam
question. Full definitions for the key terms can be found in the AT*SQA glossary (see
www.atsqa.org).

The Learning Objectives for each chapter are shown at the beginning of the chapter
and are used to create the examination for achieving the Testing Essentials
Certification. Learning objectives are allocated to a Cognitive level of knowledge (K-
Level). A K-level, or Cognitive level, is used to classify learning objectives according
to the revised taxonomy from Bloom [Anderson00]. AT*SQA uses this taxonomy to
design all examinations.

This syllabus considers four different K-levels (K1 to K4) as noted for each Learning
Objective (LO):

K-
Level

Keyword Description

1 Remember The candidate should remember or recognize a term or a
concept.

2 Understand The candidate should select an explanation for a
statement related to the question topic.

3 Apply The candidate should select the correct application of a
concept or technique and apply it to a given context.

Testing Essentials, Version 2020 7

© Association for Testing and Software Quality Assurance

4 Analyze The candidate can separate information related to a
procedure or technique into its constituent parts for better
understanding and can distinguish between facts and
inferences.

In general, all parts of this syllabus are examinable at a K1 level. That is, the
candidate will recognize, remember and recall a term or concept. Other specific
learning objectives are shown at the beginning of the pertinent chapter.

Testing Essentials, Version 2020 8

© Association for Testing and Software Quality Assurance

 1. Introduction to Software Testing
– 60 mins.
Keywords
requirements, test case, test condition, test plan, test strategy

Learning Objectives for Introduction to Software Testing

1.1 What is Software Testing
 LO-1.1.a (K2) Summarize the various forms of requirements
 LO-1.1.b (K1) Recall the meaning of “fit for purpose”

1.2 A Brief History
 LO-1.2.a (K1) Recall the difference between a test engineer and a

test analyst

1.3 Structured Testing
 LO-1.3.a (K2) Explain the purpose of the documents used in a structured testing

environment

1.4 The Role of a Tester
 LO-1.4.a (K1) Recall who can be a software tester

 1.1. What is Software Testing
Software testing has variable meanings. The term has evolved as new software
development lifecycle (SDLC) models have been introduced. Regardless of the
changes to the exact definition, software testing is an activity, or set of activities, that
are conducted to evaluate software to determine the following:

• Have the requirements been met?

• Is the software “fit for purpose”?

• Has the risk been reduced enough?

• Have important defects been identified and addressed?
Each of these questions tends to elicit more questions.

 1.1.1. Requirements
Software requirements come in many forms including:

• Formal requirements documents prepared by Business Analysts (BAs)

• Technical requirements documents, such as functional specifications, design
documents, and interface design documents

Testing Essentials, Version 2020 9

© Association for Testing and Software Quality Assurance

• Higher level documents, such as use cases which describe how an expected
user would accomplish tasks or goals by using the software

• SDLC unique documents, such as user stories in the Agile lifecycle model

• Very informal diagrams on white boards and results from workshops

• Word-of-mouth and drawings in a highly collaborative environment (where the
team is all working together, all the time)

The ability to verify that the software meets the requirements is dependent on the
clarity of the requirements. If a requirement is clear and defines exactly what the
software is supposed to do, the verification is straightforward. Where the requirements
are vague or missing, the tester must be able to apply their own knowledge of the
users and domain in order to determine if the requirements have been met.

 1.1.2. Fit for Purpose
All software is designed to fulfill a purpose, but just accomplishing a task is not
enough. In order for it to be “fit for purpose”, the software must work for the people
who will be using it, in the environment in which they will be using it. For example, a
mobile application that allows people to deposit checks by taking a picture of the
check may work great in the lab with specific lighting and backgrounds, but may fail
when used in a user’s home. In this case, the requirement may be met (it works
functionally), but it is not “fit for purpose” because it is not usable in the target
environment.

 1.1.3. Risk
Because there is rarely enough time to perform all the testing possible, risk
prioritization is used to limit the testing to what is needed to mitigate risk to an
acceptable level. Determining what is acceptable may be a matter of opinion, which is
why risk analysis requires cross-functional input to ensure each risk is being
considered and rated accurately. With the above example of the check deposit, if the
decision is that a low-lighting environment is highly unlikely, that would reduce the
rating of that risk. On the other hand, if it is determined that this is highly likely to occur
and that the user will be unable to deposit their check, the risk would be considered as
very high and additional work would be required to adequately mitigate that risk. Risk
is discussed further in Section 2.6.

 1.1.4. Finding Defects
One of the purposes of testing is to find and fix defects before the software is released
to the users. Defects, also called bugs, are flaws in the software that cause it to
function incorrectly or cause the user to use it incorrectly. Clear requirements help in
determining what is a defect and what is not. The less clear the requirements, the
more discussion will be needed to determine if an anomaly is actually a defect or if it
is just an undocumented feature of the software. Keeping the user’s view in mind
when testing the software helps the tester to better determine what a user would
consider to be a defect. For example, an incorrect text prompt “enter suer name” is
clearly a defect. What if the user name always has to be between 5-15 characters but
the user is not told that? Is that a defect? Defect identification and proper recording is

Testing Essentials, Version 2020 10

© Association for Testing and Software Quality Assurance

an important task for a tester. Defects that are not recorded accurately are difficult, if
not impossible, to fix.

 1.2. A Brief History
Software testing has existed for as long as there has been software. The formality,
emphasis, funding and respect for software testing has varied over the years, but it
will always be needed. Good practices that were popular in the 1970’s still have merit
today, just as new practices developed since that time also have merit. It is important
to remember that there is a wealth of knowledge in software testing. Environments,
languages, devices and approaches may vary, but understanding the essentials of
software testing will allow the tester to work in, and adapt to, any environment.

In software testing, there tends to be a differentiation between technical testers (i.e.,
test engineers) and non-technical testers (i.e., test analysts). Technical testers are
expected to have the skills such as those needed to write test automation, conduct
performance tests or participate in code/design reviews. Test analysts are generally
expected to conduct the functional testing (i.e., does the software meet the
requirements), as well as to consider usability (i.e., will the target user be able to use
the software effectively, efficiently, and enjoy using it) and domain/environment
attributes of the software. In some cases, test analysts are also expected to work with
end-users for user acceptance testing (UAT) and to help validate that the software will
work in the target environment for target users who are accomplishing the target
tasks.

Like software development, software testing will continue to evolve. Mastering the
essentials of software testing will help make a tester resilient and able to adapt to
changes.

 1.3. Structured Testing
Highly-structured testing, such as that required by some sequential lifecycle models
(discussed in Section 2.3), generally has a higher level of documentation. Formal test
strategies, well-defined test plans, explicit test cases, controlled test data and test
environments, and a well-managed defect lifecycle are all artifacts of a highly-
structured approach to testing.

While the documents may vary depending on the environment, the following are
normally found in a structured testing environment:

• Test strategy – a test strategy is an organization-wide document that defines
how testing will be conducted across all comparable types of projects in the
organization.

• Test plan – a test plan is the implementation of the test strategy for a particular
project and includes the approach to be used for testing, a definition of the
scope of testing for the project, the testing schedule, the resource
requirements, a description of tools and their usage, a definition of

Testing Essentials, Version 2020 11

© Association for Testing and Software Quality Assurance

environments and any other information required to describe the testing
process, and stakeholder agreement for a project.

• Test conditions – a test condition is a capability or characteristic of the software
that needs to be tested. This could be something functional, such as the ability
to enter a user name; or something non-functional, such as the expected
response time of the application under a defined load.

• Test case – a test case is the information required for a tester to test a test
condition. This can include the pre-conditions of the system (e.g., user does
not exist), the post-conditions after the test (e.g., the user has been created)
and the inputs and actions required to accomplish the goal of the test.

• Defect reports – each defect should be captured in a report that is then
processed through a workflow to record all the actions taken to resolve the
issue. A defect report normally records information, such as the environment
used, steps to reproduce, priority/severity, expected/actual results and other
descriptive information.

More information about the documentation used in testing can be found in Section
2.5. Depending on the environment, more or less of these documents will be prepared
and maintained as part of the testing process.

 1.4. The Role of a Tester
The role of a “tester” can vary with different organizations and different lifecycle
models. While software testing is a profession, others may periodically carry the title
of a software tester. For example, in an Agile lifecycle model, everyone on the team
has testing responsibilities and may be considered to be a tester. Business users may
become testers during UAT. Software developers are testers when they are testing
their own or another developer’s code.

Regardless of the name of the role, testers are responsible for gathering information
that can be used to assess the quality of the software. This information includes tests
that have been run and have met their goals (passed), tests that have not met their
goals (failed), defects found, risks mitigated, test coverage (in terms of tests executed
vs. not executed, code covered vs. not covered, risks mitigated vs. not mitigated, or
requirements tested vs. not tested) and other information needed by the stakeholders.

All testers need to be familiar with the essential areas of software testing.
Specialization in these areas may require further study, but a general familiarity is
necessary to understand what can and should be tested for any software product.

Testing Essentials, Version 2020 12

© Association for Testing and Software Quality Assurance

 2. Test Approaches – 145 mins.
Keywords
acceptance testing, Agile, alpha testing, beta testing, configuration management
system, debugger, drivers, end-to-end testing, integration testing, interoperability
testing, iterative model, Kanban, operational acceptance testing, product owner,
requirements traceability matrix, risk, risk-based testing, Scrum, Scrum Master,
sequential model, software development lifecycle, sprint, stubs, system integration
testing, system testing, test levels, unit testing, use cases, user acceptance testing,
user stories, V-model, waterfall

Learning Objectives for Test Approach

2.1 Introduction
LO-2.1.a (K1) Recall factors to consider when selecting a test approach

2.2 Testing Levels
LO-2.2.a (K1) Recall the purpose of system integration tests
LO-2.2.b (K2) Summarize the activities that take place during each of the four

levels of testing

2.3 Software Development Lifecycle
LO-2.3.a (K2) Compare the advantages and disadvantages of following either

a sequential or iterative lifecycle

2.4 Product Type
LO-2.4.a (K2) Describe how different product types affect the test approach to

be used

2.5 Documentation Requirements and Availability
LO-2.5.a (K2) Describe how different documentation requirements can drive

the selection of a test approach

2.6 Risk

LO-2.6.a (K2) Explain how risk affects the choice of a test approach

2.7 Schedule and Budget
LO-2.7.a (K2) Describe how a project's schedule and budget requirements

affect the selection of a test approach

2.8 Maturity and Ability of the Team

Testing Essentials, Version 2020 13

© Association for Testing and Software Quality Assurance

LO-2.8.a (K1) Recall how the attributes of the team members can affect the
choice of test approach

 2.1. Introduction
A test approach defines how the testing for a project will be accomplished. The
approach may be formally defined in the test plan or may be informally agreed upon
by the project team. Approaches can include methods for prioritization (e.g., risk-
based) or may specify that certain requirements be met (e.g., regulatory or
certification requirements). Test approaches generally reflect the organization’s test
strategy and are used to ensure that the methods and goals of testing are aligned with
the goals of the project team and the stakeholders.

Selecting the proper test approach for a project depends on a number of factors,
including:

• Testing levels

• Software development lifecycle

• Product type

• Documentation requirements and availability

• Risk

• Schedule and budget

• Maturity and ability of the team

All of these factors must be considered when determining the best test approach for
any project. Realistically, any one of these individual factors can skew the decision.
For example, if the project is a safety-critical project requiring approval by a regulatory
commission of some type, then documentation requirements and risk management
will become the most important factors in the test approach decision.

This section explores each of these factors and how they help to determine the
optimal test approach for a project.

 2.2. Testing Levels
Regardless of how the software is developed and which lifecycle model is followed,
there are four distinct levels of testing. These levels may be combined in some cases,
but it is important to follow the level approach to improve the efficiency of testing and
reduce the time required for troubleshooting and testing for possible regressions (i.e.,
regression testing). Adequate testing at each level is more efficient than a big bang
approach in which testing is only done once at the end of development.

While testing is generally assigned to particular team members, such as developers or
testers, testing can also be shared across team members, with the most suitable team
member doing the testing at a given point in time. The following list of levels is a

Testing Essentials, Version 2020 14

© Association for Testing and Software Quality Assurance

categorization of the types of testing that need to occur and the logical progression of
testing:

• Unit testing

• Integration testing

• System (end-to-end) testing

• Acceptance testing

In some cases, system integration testing may also be required. This happens when
multiple systems - that are comprised of complete sets of software that provide
functionality independently - must also interface with each other. In this case, testing
is needed to ensure that the independent systems integrate properly. This type of
testing usually occurs after system testing is completed on each of the independent
systems.

 2.2.1. Unit Testing
Developers conduct unit testing to ensure that their units (or modules) of code are
working according to their requirements and design. Each unit, or set of testable
units, is tested either in an automated fashion using a static analysis tool, using a unit
test framework such as JUnit, or manually using a debugger to step through a
particular test case. The purpose of unit testing is to ensure that the individual units of
code function as intended. Performance testing and cybersecurity testing of individual,
relevant units may also be conducted during unit testing. Unit testing generally applies
structure-based (white-box) testing.

Test-driven development (TDD, also sometimes called test-first development) is a
form of unit testing where the test is written before the actual code is written. In this
case, the automated test will execute and fail, until the entire testable unit is
developed. When the entire unit is available and free of detected defects, the test
code will pass. TDD was introduced in Extreme Programming (XP) and is commonly
used in Agile environments. It can also be used to develop unit test cases when using
other development methodologies such as sequential or incremental, as well as in
environments where safety-critical code is being produced and must always adhere to
the highest quality standards.

 2.2.2. Integration Testing
Developers and/or testers conduct integration testing to ensure that the tested units
work together. Integration testing focuses on the communication between units at the
points of interaction. For units that are not ready to be integrated yet, drivers and
stubs may be used as placeholders. Drivers are used to call the testable modules or
units of code. Stubs are used to act like a module or unit of code and generally return
a positive response. On a larger scale, service virtualization (SV) can be used to
simulate entire services or parts thereof. SV is commonly used when services needed
for integration are not yet available or cannot be tested (such as a banking backend
interface).

Testing Essentials, Version 2020 15

© Association for Testing and Software Quality Assurance

Integration testing can be done in a top down fashion (where the drivers are written
first and can be used to call the units as they become ready for testing), or a bottom
up fashion (where the individual units are written and tested via a driver that is written
specifically for testing purposes). The term continuous integration is used to define a
configuration management system that has test automation built in. When a new unit
is checked in, it can be exercised via test automation with other units that have also
been checked in. Continuous integration is often used after a significant set of code
has been developed to avoid spending too much time developing drivers and stubs to
simulate code that has not yet been integrated.

Integration testing is primarily functional, but can also include performance testing and
cybersecurity testing of the integrated part of the system. Integration testing is often
informal, with little documentation or formal test scripting.

 2.2.3. System Testing
System testing, or end-to-end testing, is conducted to verify that the software as a
whole is working per the defined requirements (specifications, user stories, design
documents). Testers or quality assurance (QA) analysts usually conduct this testing in
an environment that is configured similarly to the production environment and uses
data similar to what would be found in the production system. The primary goal of this
testing is to ensure that the stated requirements have been met and test coverage is
often tracked with a requirements traceability matrix (RTM). Test management and/or
requirements management tools are often used to store test cases, record test
execution and to create the traceability matrix - mapping requirements to test cases.
Documented test cases may be used to guide the testing, although lighter methods
such as checklist-guided or exploratory testing may also be used.

System testing is primarily functional, but should also include performance testing,
cybersecurity testing, interoperability testing and usability testing. Depending on the
product being tested, system testing may be extended to cover all components of the
system, including software, hardware, data, and procedures. In some cases, system
testing is the first opportunity to conduct these other types of testing in a realistic
environment.

End-to-end testing is a type of system testing that exercises transactional flows
through an entire system or set of systems. This testing often simulates real world
usage and is guided by process flows and use cases.

 2.2.4. Acceptance Testing
The goal of acceptance testing is for the targeted user or operator to “accept” the
software as working to meet their requirements for the software. Different types of
users can conduct acceptance testing in different environments. The following is a list
of the most common types of acceptance testing:

• User Acceptance Testing (UAT) – testing conducted by system users or proxies
(e.g., business analysts) for those users in order to determine if the software is
fit for purpose. This is normally performed using documented test cases and

Testing Essentials, Version 2020 16

© Association for Testing and Software Quality Assurance

exploratory testing. The users of the system exercise the system as they would
during normal daily use, including cyclical functions such as end of month and
end of year. Business analysts will sometimes guide this testing for the users.
The goal is for the users to “accept” the system based on their evaluation of
whether the acceptance criteria have been met. The users bring a unique
viewpoint that may be missed by testers who are unfamiliar with all aspects of
system usage and the real-world conditions that users encounter.

• Operational Acceptance Testing (OAT) – testing conducted by system
operators to determine if the software will work in the production environment
when fully deployed. Ideally, this testing is conducted in a staging environment
that is an exact replica of production; where that is not possible, the
environment should be as close as possible to production. System operators
use this testing to ensure that the software will work properly with load
balancers, firewalls and other production equipment, as well as with production
processes such as backups. Testing rollout and rollback plans are often part of
this as well.

• Alpha Testing – testing conducted at the development site, but not by the
developers or testers who have been working on the project. This testing is
sometimes called “internal acceptance testing”, meaning that the testing is
conducted within the organization, but is not exposed to external users.
Training groups and support groups within the organization are often used for
this type of testing.

• Beta Testing – testing conducted at a customer (or potential customer) site
using the customer’s data and network environment. This testing is usually
conducted by the customer themselves, although they may have some
assistance from the testers or developers to ensure the test coverage is
adequate. The goal of this testing is to determine if the software is fit for
purpose in the real production environment without fully releasing it to
everyone. Feedback from beta testing may result in further internal
development and/or testing prior to the full production release.

 2.3. Software Development Lifecycles

 2.3.1. Sequential Models
Sequential lifecycle models include waterfall and V-model. These are considered to
be sequential models because the steps of the development process are sequential:
requirements, design, code, test, and release. Sequential models require a fully
developed set of requirements before design and coding starts. It should be noted,
however, that in some versions of the V-model, verification occurs at each major
phase. For example, requirements reviews may be performed during requirements
development. Unit testing is usually conducted as the software is being developed.
Integration testing, system testing and acceptance testing usually occur after
development is completed.

In a pure waterfall model, testers usually are not engaged in the SDLC until the
software is completely built and the developers have completed their unit testing. In a

Testing Essentials, Version 2020 17

© Association for Testing and Software Quality Assurance

pure V-model, testers are engaged early to review requirements, design documents
and to prepare the testware (e.g., test plan, test cases) prior to receiving the code to
test.

The advantages of sequential models include:

• The requirements are considered to be stable throughout the project

• Test automation can start at the beginning of testing because the software will
not change

• In a waterfall model, the test team is only involved from the moment the code is
complete, freeing them for other tasks or other projects

• In the V-model, the test team is involved with reviewing all the documents
produced by the business analysts and developers (requirements, high-level
and low-level design documents) and can provide input on each of these, thus
engaging with the project sooner and having input that can influence the quality
of the product

• In the V-model, there is generally more time available to apply structured
testing (e.g., prepare the test documentation, including test cases)

The disadvantages of these models include the following:

• Because no code is seen by the testers until all the code is developed, there is
little opportunity to influence the usability and user experience

• The testers need time to prepare the test documentation (e.g., test cases) after
they have received the code and before they can start testing

• The users’ requirements may change while development is occurring, resulting
in a product being created that is no longer wanted

• If the development time takes longer than expected and release dates are not
moved, the time for testing is compressed

The sequential lifecycle models, in particular the V-model, are still used in the industry
and are successful in the proper environments. These models are particularly
common where thorough documentation is required (e.g., for safety-critical projects)
and where the requirements are not likely to change over the life of the project.

 2.3.2. Iterative Models
Iterative models include basic iterative and Agile. Agile is usually implemented via one
of the common process frameworks, such as Scrum or Kanban. Iterative development
simply means that the software is developed in small sets, with each iteration
producing a piece of software functionality. Iterations vary from 2 – 4 weeks and each
iteration includes analysis, design, implementation and testing.

In an Agile project using the Scrum framework, iterations are called sprints. Each
sprint has a planning session which is used to determine which user stories (i.e., small
bits of requirements) will be implemented during the sprint. The self-organizing cross-
functional team determines what they can commit to completing within the sprint. A
Scrum Master provides guidance and coaching for the team and the product owner,
represents the business, and defines and refines the requirements.

Testing Essentials, Version 2020 18

© Association for Testing and Software Quality Assurance

In a Kanban project, the emphasis is on continual delivery and managing the workflow
to eliminate bottlenecks in the process. While not strictly an Agile framework, it is
frequently used in Agile environments to manage the workflow by use of tools such as
Kanban boards.

The advantages of the iterative models include the following:

• The team is able to react quickly to changing requirements

• A demonstrable product, or piece thereof, is available for the customer to see
and use

• Early feedback can change the direction of the team and the product to better
suit the needs of the customer

• Schedule constraints are handled by implementing less functionality
• Testers are more engaged in the overall process and tend to form closer

relationships with the developers

The disadvantages of the iterative models include the following:

• Too frequent changes in direction can result in little or no progress

• Lack of detailed documentation means reliance on communication, which may
be difficult for a team that is dispersed

• If cultural issues in an organization are significant, people may not be able to
work effectively as a cross-functional team

• Lack of detailed documentation may make the model infeasible for some
products, particularly those with regulatory or safety-critical aspects

• Test automation is mandatory to avoid manual testing time becoming
increasingly long due to the larger scope of regression testing as iterations
progress

• Rigid adherence to the process can result in a significant learning curve for a
team

Iterative models have been around for many years, long before Agile was defined.
These models have worked successfully across a wide variety of software projects
and continue to be the most dominant models in the industry.

 2.3.3. Hybrid Models
While there are defined software development lifecycle (SDLC) models, it is important
to remember that most organizations do not follow a “pure” model. Most organizations
follow hybrid models that take bits and pieces from various models to create a best-fit
model for the organization. Sometimes this is done wisely, picking the most efficient
and practical model; but more often than not, this is done without considering what is
being left out. That is where the danger lies.

SDLCs have built-in safeguards to ensure that necessary steps are completed.
Picking and choosing the “best” parts from different SDLCs is likely to result in
weaknesses being exposed. For example, if an organization were to pick an Agile
SDLC, but also chooses to work without defining acceptance criteria for stories, there

Testing Essentials, Version 2020 19

© Association for Testing and Software Quality Assurance

is a gap created in the validation aspects of the project. Similarly, if an organization
were to pick a waterfall model, but decides to use stories to document the
requirements, the concept of completed and well-defined requirements before the
start of coding is violated. This may result in a product that is incompletely developed
or in a product that necessarily must change as development progresses. This results
in a longer development time and a compression of the testing schedule.

When selecting a model, it is important to understand the project, the team, the
product and the goals of the organization in order to select the best fit. More
information on software lifecycle models can be found in ISO/IEC/IEEE 12207:2017
and ISO/IEC/IEEE 15288.

 2.4. Product Type
Another consideration when determining the testing approach is the type of product
that is being developed. A mobile application that is expected to last for six months
requires a different approach than software that will control the navigation of a fleet of
aircraft. In general, the longer the software will stay in production and the more critical
the functionality of the software, the more formal the approach. A formal approach
may dictate the lifecycle model, the level of documentation required and the test
techniques to be used. Similarly, a short-lived application that is used to provide a
game interface for idle travelers may be best served by a lightweight approach with an
Agile lifecycle, minimal documentation and only exploratory or acceptance testing.

When deciding how the product type may influence the test approach, the following
factors should be considered:

• Length of time the software will be used in production before replacement

• Any safety-critical aspects of the software

• Any regulatory requirements that must be met

• Competition and market opportunities (e.g., bigger feature set, better usability)

• Requirements for security and performance

• The testers’ understanding of the product and domain, and the degree of
changes to either the product or related items

The best test approach for a product is somewhere on the spectrum from formal and
fully documented to informal and lightweight.

 2.5. Documentation Requirements and Availability

In software testing, documentation has two general categories: documents required
to properly test the product, and documents required to demonstrate the testing has
been completed. The test approach is heavily influenced by the availability of
documentation and the requirement to provide documentation from the test process. If
there is little or no documentation regarding what the software is supposed to do or
how it will do it, the tester is forced into an approach that includes some amount of
exploring the software to understand what it is doing. Creating detailed test cases may

Testing Essentials, Version 2020 20

© Association for Testing and Software Quality Assurance

not be worthwhile since the testing will be occurring while the research is being
conducted to document the test cases.

On the other hand, if test case documentation and test execution evidence is required
by the project, then that documentation will have to be created, maintained and
updated as needed. If there are plans to keep a product in production for several
years and updates are likely, there is a greater need for reusable test artifacts,
particularly test cases. The requirements for a test management system are
influenced by the need to track documentation and test evidence during testing.

The types of documentation that can be used as input for the testing effort include:

• Requirements documents

• Specifications (e.g., technical/architectural, user and database specifications)

• User stories

• Business cases

• Use cases

• Design documents
• Screen mockups and wireframes

• Sample reports

• Existing test cases

• Checklists

• Defect reports

• Requirements traceability matrix

• Existing user and operational guides

The types of documentation that can be provided as evidence of test execution
include the following:

• Test cases with pass/fail recorded at the test case and step level

• Screen shots

• Defect reports

• Coverage reports

• Test automation logs and reports

Projects have differing documentation requirements. It is important to select a test
management and document management system that will help to track, version and
report the documentation that is needed across the variety of projects, that will also be
supported by the tools. It is important to remember that documentation has no value
unless someone will use it. It is good practice to always aim for the lightest suitable
documentation for a project; consider re-use, consider true needs and consider other
ways of communication to ensure that the documents produced meet the needs of the
project without burdening the team.

Testing Essentials, Version 2020 21

© Association for Testing and Software Quality Assurance

 2.6. Risk
In testing, risk is defined as an event or condition that could occur and would result in
a negative outcome. If the event or condition actually occurs, it is called an issue
[PMBOK]. While a risk has somewhere between a 1% and 99% probability of
occurring, an issue has 100% probability of occurring because it has actually
occurred.

Risk is a significant factor in determining the best test approach. Higher risk projects
generally require more formal approaches with more complete documentation. Lower
risk projects can work with a lighter approach and may require little or no
documentation. Using risk prioritization, commonly called risk-based testing, on every
project is a strong approach and helps to prioritize and define all testing activities,
including the following:

• Formality of the test approach

• Test case preparation and documentation level

• Test execution

• Defect prioritization

• Defect re-testing

• Regression testing

• Timing of other testing such as security and performance

• Test automation requirements

• Depth and breadth of testing

Identifying risk is best done with a cross-functional group who can clearly review the
project, its intentions, and identify the risks that are inherent in the project and the
software being developed. Once the risks have been identified, they can each be
assessed in terms of likelihood of occurrence and impact to the customer or system if
they occur. The resulting intersection of likelihood and impact is often expressed as
the risk level. For example, high likelihood and high impact would result in a risk level
of “High” or “Very High”. Another way to express the risk level is by numeric scores on
a scale of 1 – 10. This assessment helps to indicate the mitigation required and can
guide the types, extent and priorities of testing. User training may be used to mitigate
some risks whereas other risks may require extensive testing in a production-like
environment.

Assessing and ranking all identified risks allows the team to determine the best
approaches for mitigation and also helps to set the testing schedule. For example, a
high likelihood and high impact risk that can be best mitigated by testing will usually
require more time in the testing schedule than a risk with low likelihood and low
impact. It should be noted that there is a degree of error in assessing risk as it is
essentially a qualitative exercise. Contingency plans are helpful when low risks may
become high risks.

Testing Essentials, Version 2020 22

© Association for Testing and Software Quality Assurance

 2.7. Schedule and Budget
Any testing approach must consider the schedule and budget for the project. It is
unusual to find a project for which there is not a pre-defined schedule and/or budget.
When the test approach can influence the establishment of a project’s schedule and
budget, adequate time and resources should be allocated for testing. More commonly,
the schedule and budget are already set before the testing approach is considered. In
this case, the test approach changes from “what should we do” to “what can we do”.
When defining the best test approach for a project scenario, it is good practice to start
with the “should” and then factor that down to fit the schedule/budget.

When schedule is tight, risk-based testing is the most solid approach. It allows testing
to be prioritized to mitigate the most important risks first. With a constrained schedule,
this will help provide visibility to the project team regarding the risk that has been
mitigated and the risk that is still outstanding. Because tight schedules often result in
insufficient testing, it is important that the project team understands and accepts that
there is significant residual risk. Risk-based testing can be conducted within any
lifecycle. It is a method of test organization that addresses testing in a risk-based
order, within the overall project or within an individual iteration.

When the budget is tight, testing often suffers from a lack of time and resources. It is
important to understand the constraints that will be placed on the testing as early as
possible. For example, a constrained budget may mean that there will be no
dedicated test environments. This may force the testing effort to share the same
environment as the development effort, potentially resulting in inefficiencies and re-
testing. This quickly becomes a schedule issue as well. Insufficient tester resources
and inadequate tools may also be evident when the budget is constrained.

Any possible issues of this type must be anticipated in the test approach. If testing
and development will be forced to work in the same environments, using an iterative
approach is logical because of the close interaction. Pushing more testing earlier (i.e.,
“shift left”) is another way to combat tight schedules and budgets. This allows testing
to happen sooner and for quality issues to be addressed more quickly. Testing will
always be faster and less expensive when the product being tested is of a higher
quality.

 2.8. Maturity and Ability of the Team

One last factor to consider when determining the test approach is the maturity of the
team as well as the team’s ability. A mature team who has worked together before
and has a high level of skill and product knowledge may work better with less
documentation and communication than a team that is new or distributed.
Documentation is a way of communicating and bridging time zone issues. Less
documentation means more verbal communication is required. A team that is
comfortable with web meetings and video conferencing may be more effective with

Testing Essentials, Version 2020 23

© Association for Testing and Software Quality Assurance

less documentation than a team that prefers emails and documents to convey
information.

Projects that include multiple teams will require more coordination and timely
communication to avoid creating bottlenecks and frustration. Teams that have some
outsourced aspects may require more formalized communication and documentation
due to contractual requirements.

A well-skilled, mature team can make any testing approach work. The challenges
often arise in a team with variable or minimal skills and a distributed environment
where people cannot easily talk with each other. It is important to consider the
approach that will work best for both the product and the people.

Testing Essentials, Version 2020 24

© Association for Testing and Software Quality Assurance

 3. Testing Techniques – 215 mins
Keywords
Application Programming Interface (API), boundary value analysis (BVA),
classification trees, combinatorial testing, decision table, equivalence partitioning
(EP), exploratory testing, orthogonal arrays, pairwise testing, session-based testing,
test charters, tester

3.1 Introduction

None

3.2 Partitions and Boundaries
LO-3.2.a (K3) For a given set of requirements, create a series of test cases

using a combination of equivalence partitioning and boundary value
analysis (BVA) testing techniques

LO-3.2.b (K1) Recall the types of defects that are likely to be found using
equivalence partitioning and BVA

3.3 Decision Tables
LO-3.3.a (K3) For a given set of requirements, apply the decision table testing

technique
LO-3.3.b (K1) Recall the types of defects that are likely to be found using

decision table testing

3.4 Combinatorial
LO-3.4.a (K2) Describe combinatorial testing and the tools and techniques

that are used
LO-3.4.b (K1) Recall the types of defects that are likely to be found using

combinatorial testing

3.5 Exploratory

LO-3.5.a (K2) Explain the concept and application of exploratory testing
LO-3.5.b (K1) Recall the types of defects that are likely to be found using

exploratory testing

3.6 API Testing
LO-3.6.a (K2) Describe the purpose and application of API testing
LO-3.6.b (K1) Recall the types of defects that are likely to be found using API

testing

3.7 Picking the Best Technique
LO-3.7.a (K1) Recall how to select testing techniques for a given project

Testing Essentials, Version 2020 25

© Association for Testing and Software Quality Assurance

 3.1. Introduction
Test techniques are procedures that are used to identify and select test conditions
that can be targeted by tests. Test techniques can be applied at any stage in the
development of software. The earlier testing starts (i.e., the shift left), the more
effective and efficient the testing is. In the world of rapid lifecycles and continuous
integration and deployment, testing is a critical task that must be executed to ensure
that quality is being built into a product. Testing tasks are often shared by developers
and testers, particularly in mixed skill teams commonly seen in Agile SDLCs. In this
document, the term “tester” means the person designing and executing the tests as
an activity, not necessarily a specific role with a “tester” title. For example, a business
user may be the tester in the UAT activity, but they would not be a full-time tester.

It can be argued that exploratory testing and API testing are actually test types or
even test approaches rather than test techniques. Generally, these two types are
lumped together with the test techniques, so this chapter follows that same approach.

This section explores six common testing techniques that are applicable across a
wide range of software. For the sake of this chapter, these are grouped together.
Each of these has particular targets for the testing and is suited to finding particular
types of defects. No one technique is suitable or effective in all situations and each
technique has a target coverage. Often, a combination of techniques is used to
provide the most efficient coverage.

 3.2 Partitions and Boundaries

 3.2.1 Equivalence Partitioning
Equivalence Partitioning (EP) is used to reduce the number of specific tests while still
assuring broad coverage. EP is usually focused on determining a set of input values
to use during testing, although it can also be used to categorize output values,
processing variables or even environments. To apply EP, the set of possible values is
divided into partitions (or equivalence classes) in which all values in the partition will
be handled the same way by the software (e.g., positive values will be processed,
negative values will cause errors).

Partitions can be considered “valid” or “invalid”. All the values in a valid partition
should be accepted or processed by the software with no errors. All the values in an
invalid partition should be handled as errors. For example, if the valid partition is for all
triangles, then everything that is not a triangle is in the invalid partition. For input
values, if the valid values are from 1-100, then anything below 1 would be in an invalid
partition for values that are too low; and anything above 100 would be in an invalid
partition for values that are too high.

Testing Essentials, Version 2020 26

© Association for Testing and Software Quality Assurance

Once the partitions are established, one value is selected from each defined partition
(valid and invalid) and how that value is handled is assumed to be representative of
how all the values in that partition would be handled.

Application
This technique is best applied when there are known sets of values that will receive
the same processing. It is commonly used for input values where the set (or partition)
of values can be determined. A risk with this technique occurs when partitions are
established with values that actually receive different processing. It is important to
have good information regarding how the software works when picking the proper
partitions.

Types of defects
Defects found by this technique are usually functional in nature and deal with incorrect
handling of various sets of data (e.g., no error handling for negative values).

Coverage
Coverage is determined by dividing the number of partitions for which a value has
been tested by the total number of partitions identified. For example, if there are ten
sets of values for which processing is different, and at least one value from each of
five partitions has been tested, then 50% coverage has been achieved with this
technique.

 3.2.2. Boundary Value Analysis
Boundary Value Analysis (BVA) is an extension of EP and concentrates on testing the
values that fall on or near the boundaries of partitions. BVA requires ordered partitions
(i.e., ranges of numbers), to be able to test the boundaries of the ranges. Testing can
be done with a two-value or three-value approach. With two-value BVA, the actual
boundary value (in the valid partition) is tested as well as the value that falls
immediately outside of the partition (in the invalid partition). With three-value BVA, the
value immediately before the boundary (valid), the value on the boundary (valid) and
the value immediately over the boundary (invalid) are tested. Two-value is the more
common application of BVA; however, the three-value method can be very helpful in
cases when a single threshold is crossed, such as a processing date.

Application
BVA can be applied to any ordered partition to determine if the values on and over the
boundary are handled properly. Because this is a common place for errors to be made
when programming, this tends to be a high yield technique that is relatively easy to
apply.

Types of Defects
Defects detected are related to incorrect boundary handling, such as the value of the
boundary not being included in a valid range of values or a boundary that is not in the
correct place. Essentially, BVA detects defects due to the incorrect usage of a
relational operator in the code or a requirement, such as > or =.

Testing Essentials, Version 2020 27

© Association for Testing and Software Quality Assurance

Coverage
Coverage with this technique is determined based on how many boundaries are
tested divided by the number of boundaries there are (determined by the number of
partitions with each partition having two boundaries). A boundary test consists of
either two values or three values, depending on the approach selected.

 3.3. Decision Tables
Decision tables are used in requirements engineering and testing to help define how
business rules should be handled. Decision tables consist of two halves of a table,
with the top half typically showing the conditions to be tested (one condition per row)
and the bottom half showing the expected results from a set of conditions (one result
per row). Columns are used to determine if a condition is to be tested, usually with a
true/false or yes/no value for each condition. Results are indicated in each column
based on the results expected for that combination of conditions. Multiple results are
possible for a particular condition combination (e.g., display an error and return to the
previous screen). Condition combinations and interactions are tested with decision
tables by verifying that different combinations of conditions result in the proper
outcomes or expected results.

Application
Decision tables are well suited for software that must make decisions based on sets of
conditions in order to return a proper result. Business rules and any type of non-trivial
decision logic are good targets for this type of testing. Because the decision table
itself presents sets of conditions and expected outcomes, it is often used as a shortcut
to creating detailed test cases. Decision tables can serve as an organized checklist to
ensure all significant decision logic is tested without having to further document
concrete test cases.

Decision tables can also be used to derive additional rules from the software, based
on the knowledge of only one rule. When only one rule and its conditions and
outcomes are known, the tester can surmise the proper outcomes of other
combinations of the conditions.

Types of Defects
Erroneous decisions and the resulting incorrect outcome(s) are targeted by this type
of testing. Decision defects may be caused by incorrect coding or incorrect/unclear
requirements. When used in requirements engineering and analysis, decision tables
will often identify condition combinations that are not handled or where the expected
outcome is unknown, indicating that further analysis is needed.

Coverage
Decision table coverage is determined by the number of columns covered by at least
one test divided by the possible combinations (the columns of the table).

Testing Essentials, Version 2020 28

© Association for Testing and Software Quality Assurance

 3.4. Combinatorial
Combinatorial testing techniques are used to limit the number of combinations of
supposedly non-interacting (independent) parameters or conditions that need to be
tested. The parameters must be compatible, meaning that any one parameter can be
paired with any other parameter. Because some combinations will be eliminated with
this technique, it is important to ensure that the conditions should not interact. In the
case of testing software across a large set of different browsers and operating
systems, testing every possible combination would be prohibitive in effort.
Combinatorial testing applies algorithms that are built into tools that mathematically
reduce the number of combinations to a manageable set while still preserving a good
level of coverage.

This technique is very helpful in reducing the number of test cases when the potential
number of test condition combinations are too many to test, either manually or with
test automation. It is important to note that additional test cases may be needed to
cover important condition combinations not derived from combinatorial test design. In
addition, expected results must be documented for each test case, as the
combinatorial approach only identifies efficient combinations of test conditions, not
outcomes.

There are a number of tools and approaches used in combinatorial testing. The most
common of these are:

• Pairwise testing - in this approach all pairs of combinations are tested
together, but not all possible combinations

• Classifications trees - this approach allows the user to create a diagram of a
"tree" that shows the variables to be tested and then applies an algorithm that
will cover all singles, pairs, tuples, etc. of the combination of the variables

• Orthogonal arrays - this approach uses preset arrays of values to determine
the combinations to be tested

Application
Any testing that needs to be conducted with non-interacting conditions or variables
can benefit from this technique. Such instances could include environment variables
(e.g., operating system, browser, or device type) or combinations of internal variables
(e.g., car color, car type, or car price).

Types of Defects
This technique generally identifies defects where a particular combination that should
be handled is not (e.g., a particular device type is not handled) or where there is an
interaction between the conditions (e.g., the color of the car influences the price of the
car).

Coverage
Coverage with this technique is determined by dividing the number of test
combinations tested by the number of combinations generated by the specific tool or
technique.

Testing Essentials, Version 2020 29

© Association for Testing and Software Quality Assurance

 3.5. Exploratory Testing
Exploratory testing is a combination of learning how the software works (exploring)
and testing that it works as expected. Exploratory testing is often session-based
(sometimes called session-based testing) and may be guided by test charters which
define the objective for a test session. Session sheets may be filled in at the
conclusion of the testing to log what has been tested and to note any unexpected
occurrences for further investigation. Timeboxing is commonly used to set a time limit
for a session. Timeboxing focuses the testing on the defined objective and controls
the time that is devoted to a particular charter.

Exploratory testing is most effective when conducted by an experienced tester who is
trained to detect issues that an untrained operator could easily miss. Those with good
domain knowledge and testing skills are best suited for this type of testing. In an Agile
project, someone with a testing background paired with a product owner can help
produce the best outcome from these testing sessions.

Application
This technique is well suited to an environment where quick feedback is needed
regarding the overall quality of an area of the software. This is sometimes called
“smoke testing” or “sanity testing”. It also works well in environments where there is
only minimal documentation regarding the expected functionality of the software. In
Agile projects, exploratory testing is often used as a first validation that the
acceptance criteria for a story have been met. This may be followed by more
methodical testing as time allows. In more formal testing environments, exploratory
testing may be used to augment other testing techniques in order to check for gaps in
the test coverage and to allow the tester to bring more creativity to the task.

Types of Defects
Defects found tend to be functional issues where the requirements have not been
implemented correctly or where user transactions and scenarios are not supported.
Non-functional issues may be found in the areas of usability and performance,
particularly when the testing is concentrated on end-to-end transactions. Security
issues, particularly access control, may also become apparent with this type of
testing. Although performance and security defects may be found when exploring, it is
not a substitute for formal, planned performance and cybersecurity testing.

Coverage
One of the drawbacks of exploratory testing is the difficulty in determining coverage.
Because an individual tester may take any number of paths when testing the software,
it is likely that the coverage will vary widely and that repeatability of the tests may not
be possible unless detailed notes are recorded in the session sheets. It is possible to
equate a test session to a test case. When this is done, coverage of sorts can be
measured based on the number of sessions (test cases) completed vs. not run.

Testing Essentials, Version 2020 30

© Association for Testing and Software Quality Assurance

 3.6. API Testing
API testing is more of an approach to testing than an actual technique. API testing
focuses on the interfaces between software components rather than the techniques
discussed above that are applied to testing primarily conducted from the UI. For
example, an application may have an interface that it uses to communicate to a web
service. That interface is called an API. When testing this API, the testing would focus
on the information passed between the application and the web service, error
recovery and data handling.

API testing is often conducted with the assistance of tools that will analyze the
expected inputs of an API and present the user with parameters that must be
assigned values during the testing. Testing of an API usually focuses on sending
values to the API and verifying that the values returned from the API meet the
expectations. Understanding the purpose of the API is important for creating valid test
data and to validate the response.

Application
API testing is often conducted when testing via another interface, such as the User
Interface (UI), would require more effort than is justified by the result. In many cases,
manual testing is concentrated on the UI, including the look and feel, while API testing
is used to validate that the services used by the front end will perform correctly both
with valid and invalid data. In cases where the UI is not yet available, or is unstable,
testing from the API may be the most effective approach. Test automation is also
sometimes concentrated at the API, where it will not be subjected to changes in the UI
that may break the automation scripts.

API testing requires either the use of tools or programming to access the APIs, send
data and receive responses. Automating this testing is an efficient approach and will
allow testing of multiple services independently without having to drive the interactions
from the UI. Because API testing does not depend on a stable UI, testing can often
start earlier and automation can be built earlier as well.

Types of Defects
API testing can find a variety of defects, including functional issues where the right
data is processed incorrectly, or incorrect data is not detected and reported properly.
Error recovery issues, such as transactions being re-processed when a service is not
available or is not responding in a timely manner, can also be detected with API
testing. Non-functional issues such as performance can be detected with API testing.
Cybersecurity testing, including access rights and vulnerability detection, can also be
conducted through the API.

Coverage
API test coverage is dependent on the capabilities of the API. At a minimum, all input
and output parameters should be checked with a variety of valid and invalid data.

Testing Essentials, Version 2020 31

© Association for Testing and Software Quality Assurance

 3.7. Picking the Best Technique
There is no single perfect technique, which is why anyone involved in testing should
have a good understanding of the various techniques and be able to apply them
appropriately. Combinations of techniques are often used to get the best coverage for
the least amount of effort. For example, pairing decision tables with equivalence
partitioning can help determine the values that need to be entered to exercise the
various decision combinations.

It is important to understand the applicability and coverage that can be achieved with
any of the techniques. Using techniques in combination will help to provide the level of
testing needed for any product. When developers use API testing as part of unit
testing, it may make sense to leverage those tests to build the test automation that will
be part of a continuous integration/continuous deployment implementation. Similarly,
developing good decision tables and automating the high priority condition
combinations can give a good level of assurance that the main functionality of an
application is working.

Exploratory testing, in both formal and informal approaches, is used extensively in the
industry. It provides quick feedback and can be leveraged to learn about a new
software release without combing through documentation that may or may not exist.
While it is a useful tool in the arsenal, it does not provide a way to measure coverage
and, therefore, large areas of the code can be missed. This is particularly so when
applied by less experienced testers or developers who are concentrating only on
certain areas. It is important to understand the goals of testing and the necessary
level of coverage in order to pick the most appropriate technique(s).

Testing Essentials, Version 2020 32

© Association for Testing and Software Quality Assurance

 4. Test Automation – 200 mins.
Keywords
automation engineer, data-driven, emulators, keyword-driven, simulators, test
automation framework, testware

Learning Objectives for Test Automation

4.1 Introduction
None

4.2 Selecting Test Automation Candidates
LO-4.2.a (K1) Recall how ROI for test automation is determined
LO-4.2.b (K2) Explain the factors to be considered when determining if a

project is well suited for test automation

4.3 Building Maintainable Test Automation Software
LO-4.3.a (K2) Explain the differences between data-driven and keyword-

driven test automation
LO-4.3.b (K2) Understand the purpose of a test automation framework
LO-4.3.c (K1) Recall why test automation must be updated

4.4 Benefits of Automated Testing
LO-4.4.a (K1) Recall why test automation can increase test coverage
LO-4.4.a (K2) Describe the benefits of test automation
LO-4.4.b (K1) Recall how test automation can reduce costs

4.5 Test Automation Risks
LO-4.5.a (K2) Explain the risk factors for automation projects

4.6 Test Automation Success Factors

LO-4.6.a (K2) Explain the success factors for automation projects
LO-4.6.b (K1) Recall the recommended order for automation implementation

4.7 Test Automation Tools

None

Testing Essentials, Version 2020 33

© Association for Testing and Software Quality Assurance

 4.1. Introduction
Test automation is a method of testing that uses automated test scripts rather than
manual test cases. The test scripts are small software programs written in a scripting
or programming language that accomplish the goals of a test by controlling the inputs
to a software module and verifying that the results match the expectations. In its
simplest form, a script mimics the user interaction with the system under test (SUT)
and is programmed to report any variances from the expected behavior.

Test automation can be expensive to implement, but, when done correctly, can save
enormous amounts of manual testing effort. With effective use of test automation, the
quantity of tests executed can be increased, which results in greater requirements
coverage, shorter time for execution and higher reliability and repeatability in the
testing.

 4.2. Selecting Test Automation Candidates

In order to maximize the efficiency of the automation effort, the test automation must
be designed for long term use and maintainability. The return on investment (ROI) for
test automation is based on the amount of money/time required to build the initial
software and to maintain it over its lifetime (the investment), compared with the time
saved from the equivalent manual testing effort (the return). A test automation project
is only worthwhile if the return will be higher than the investment. Not all software is
suitable for automation and attempting to automate unsuitable software will reduce the
potential return while increasing the investment.

Good project candidates for automation share some common characteristics.

Expected long term usage – Because test automation is generally expensive to
develop due to the cost of the tools and the effort to create the test scripts, the
resulting automated tests need to be run multiple times to recover the costs. A
standard heuristic is that the target software should remain in production for 2-5 years
in order to regain the automation costs.

Stable functionality and interface – To reduce maintenance costs due to changes in
the programmed scripts, it is more cost effective to create the test automation at the
point when the target software has stabilized. Stabilization is generally reached when
a set of core functionality is working and will not be substantially changed. It is also
important for the interfaces used by the automation (e.g., the UI, the APIs) to be
established and unchanging. Changes to the interface will require updates/changes to
the test automation scripts that access the SUT via that interface.

Need for frequent regression testing – The best automated tests are those that are
used frequently. When the software under test has need of frequent regression
testing, test automation can be utilized to effectively and quickly conduct those tests

Testing Essentials, Version 2020 34

© Association for Testing and Software Quality Assurance

and provide reliable and repeatable results. The more frequently the tests are used,
the higher the return on investment.

Adequate tool support – Not everything can or should be automated. While there
are many tools, and the tool family continues to improve and expand, there may be
situations where the right tool is not available. This sometimes happens with code that
uses unique interfaces or for embedded software that is communicating with
hardware. Some of these issues can be resolved with simulators (i.e., software that is
created to act like the software under test) or emulators (i.e., software that is created
to act like the software working on the hardware under test), but sometimes the only
option is to create a custom tool. Before this option is selected though, there must be
an understanding of who will provide on-going support for the tool and how much
effort will be required to create the tool.

Adequate skills in the team – Developing test automation is a software development
project and should be conducted as such, with proper design, architecture,
development, testing and documentation. While some tools provide a more user-
friendly interface (generally at a higher cost), true programming skills are usually
required to either write the test automation scripts or to write “glue-ware” that will
stand between the test automation scripts and other capabilities (such as opening and
parsing emails).

Management support – Test automation can be an expensive process and requires
management support, understanding and approval. Tools can be expensive to
purchase and may have license renewal considerations. Specific programming skills
are required which may necessitate hiring people with skills for the selected tools.
Because schedules can sometimes be delayed, it is important for management to
have a clear understanding of the work required to achieve the desired level of
automation.

 4.3. Building Maintainable Test Automation
Software
Maintainable test automation starts with building an automation framework. The value
of a test automation framework is that it provides a way to identify and control all test
automation testware. Without a framework, the result is often an inconsistent and
unmanageable collection of automated test scripts. Building the framework also
requires implementing the right tools, selecting and training the right people and
creating the overall automation plan. The following steps are needed to create an
effective framework for test automation.

 4.3.1. Deciding on Data-Driven vs. Keyword-Driven Approach
Data-driven test automation separates the test script (the steps to be executed) from
the data to be used (for input and verification). The data is usually accessed by the
script from a spreadsheet or database and is maintained by a test analyst with good

Testing Essentials, Version 2020 35

© Association for Testing and Software Quality Assurance

knowledge of the domain to be tested. This allows for the best use of the
programming skills of the automation engineer while the testing skills of the test
analyst are leveraged to supply and control the data. This separation provides a
higher level of maintainability by allowing a single script to conduct many tests where
the only variance is the test data.

Keyword-driven test automation goes one step further and uses action words, or
keywords, to describe the actions to be performed by the script. The test analyst
defines the actions that are to be tested (e.g., add a user) and the data to be used by
the actions (e.g., first name, last name, and address). The automation engineer writes
a test script that will read the action and then perform the appropriate steps using the
provided data. This type of coding allows the script and the data tables with action
words to be reusable for multiple tests and limits the areas where changes are
needed when new functions are added.

Keyword-driven test automation is particularly well suited for early automation
development with Agile and similar SDLCs where automation is built while the
software is still evolving. New keywords can be added as new functionality is
developed, allowing automation to start early without creating a large maintenance
effort later (i.e., accruing technical debt).

 4.3.2. Implementing the Framework
When a framework is created, standards are established for the test automation
development project. Naming conventions are defined and reusable functions are
created to form the basis of the library. Elements from the library can be re-used in
various scripts, reducing the need for development and lowering the maintenance
requirements by having common shared code. A good framework is essential for
creating efficient test automation that will be maintainable across a set of automation
engineers. A framework, once established, also allows automation engineers to work
on adding more to the function library as time allows, making the framework a living
structure.

 4.3.3. Building Continuously
An automation project is generally considered complete only when the software under
test is no longer changing and no changes to existing tests are needed. Until that
time, the automation must be continuously monitored, maintained and augmented to
maintain and increase coverage of the software under test. Test automation that is not
updated will result in declining coverage over the life of the software under test,
increasing the chances of regressions escaping unnoticed. It is important to
understand the on-going maintenance costs of a test automation suite to factor into
the budget.

 4.4. Benefits of Automated Testing
There are a number of benefits to automating testing. The primary benefits include
the following:

Testing Essentials, Version 2020 36

© Association for Testing and Software Quality Assurance

• Automation can execute more tests in a shorter period of time, which in turns
helps to increase test coverage

• Scripted tests will always run the same steps in the same order, providing
greater reliability, repeatability, and improved consistency

• Reusability of automated tests facilitates future regression testing

• Faster release cycles are possible with lower regression risk

• Tests that are complex and difficult to execute manually can be good
candidates for automation, to reduce the burden on the manual test effort

• Using data-driven or keyword-driven techniques allows more tests to be
generated by adding more actions/data with no scripting changes

• The same tests can be run against various hardware and software
configurations resulting in compatibility tests being automated

• More time is available for testers to explore new areas of the software that may
have previously been untested, resulting in higher quality software

• By improving the frequency of testing (particularly regression testing) the
continuous testing required for DevOps initiatives is possible

• By testing earlier with the use of automated tests, defect detection and
remediation is less expensive

• Tests can be executed at times when people do not need to be using the
system

A well-implemented test automation program will result in overall improvements to the
efficiency of the testing, which in turn results in lower test execution costs. Test
automation allows an organization to move to a faster release cycle with higher
quality, allowing better responsiveness to market needs.

 4.5. Test Automation Risks

There are risks with a test automation effort. These risks include the following:
• Management may perceive there is less need for manual testers when

automation is in place. In reality, manual testers’ roles are expanded when test
automation is introduced.

• Automated testing is not automatic testing. Test automation systems can be
brittle if not designed and constructed properly. This is a problem that is
frequently seen with scripts that have been recorded from execution rather than
having been designed for maintainability and reusability. Recorded scripts can
be a basis for script development, but the recording must be converted to a
reusable, well-structured and maintainable script.

• Test automation does not necessarily improve the effectiveness of testing in
terms of defects found, as the quality of the automated tests depend on the
quality of the test cases (such as the correct test conditions) and the basis for
the tests (such as specifications). It is common for automated tests to become
more confirmatory in nature as opposed to discovering new defects.

• Proper tool selection is critically important. Selecting the wrong tool due to an
inadequate evaluation process can create extra effort and may render the
implementation impossible.

Testing Essentials, Version 2020 37

© Association for Testing and Software Quality Assurance

• Tool support must be reliable. Open source tools may go dormant if there is no
strong community support. A commercial tool’s vendor may go out of business
or change directions. Tools may experience unexpected changes requiring
unplanned changes in the testware.

• Automation will not solve all testing problems. If a good testing process is not
already in place, the automation effort may just speed up chaos.

• Accurate reporting can be difficult. Failures may cascade causing the numbers
to inaccurately reflect the quality of the software. Defects must still be analyzed
and documented by a person.

• Poor maintainability will be expensive. Potentially, very expensive.

 4.6. Test Automation Success Factors
In addition to the characteristics of good automation targets, there are also some
common success factors that will help to ensure the automation effort achieves the
defined goals.

 4.6.1. Find the Right Project
The first step in a test automation project is identifying the appropriate software
system candidate. Systems that are near their sunset years and will soon be retired
are generally not considered good candidates for automation as the return on
investment will be short-lived. An exception to this might be starting test automation
development on a retiring system to capture data and tests that will be valid in the
replacement system, albeit with adjustments for the new interface.

 4.6.2. Build Automatability into the System
Building a maintainable and reusable test automation suite starts with ensuring that
the design of the system to be tested supports and facilitates test automation. One
common issue in test automation efforts is trying to automate software which is
inherently difficult to automate. This could be because it contains inconsistently
named or mis-named objects. For object-based test automation (which is the standard
and preferred approach in test automation), object identification is essential for
creating maintainable test automation. Limited test access to APIs, a lack of
observability during testing, insufficient logging, etc. can also significantly complicate
the test automation effort, leading to more time and money spent on maintenance
throughout the life of the automation. Early involvement by the automation engineer
during the design of the system to be tested can help to ensure that the necessary
support for the automation is built into the system.

 4.6.3. Show Early Success
A large automation project can take years to complete. It is important to create interim
milestones and demonstrate that the milestones are being met. In general, there are
three areas of automation focus. In order of priority (and to provide the most visible
return on investment quickly), implementation should proceed as follows:

Testing Essentials, Version 2020 38

© Association for Testing and Software Quality Assurance

• Create acceptance/verification tests for the software build – these are positive
path tests that are used to verify that the code added to the build did not “break”
the build. These tests are run every time code is committed and provide fast
feedback to the developers if any issues have been introduced. In a frequent
build environment, such as Agile, or in a continuous integration model, this
automated testing is critical to the success of the process.

• Regression tests – regression tests are generally stable and well-defined.
Automation for these tests is efficient because they will be used many times
over the life of the product and that automation will save significant manual test
execution time. Automated regression tests allow a team to release software
safely, more frequently, and free testing time for more important areas.

• Functionality tests – in general, test automation is faster when the software
being tested is stable. This results in fewer changes to the automation because
the code being tested is not changing. That said, functional testing still needs to
be automated, particularly in the rapid SDLCs, such as Agile. In this case, the
code may not be stable as new features are still being added and evolved.
Maintainability in design is critical for the test automation effort to be able to
make forward progress and not be consumed by maintenance issues.

 4.6.4. Review the Plan
Original estimations for an automation effort are sometimes wrong. This may be due
to technical issues, frequently changing SUT, slow ramp-up of the testing team or
other reasons. Reviewing the plan and validating the schedule should occur on a
periodic basis to understand changes to the schedules and identified risks. It is also
important to continually set realistic milestones and report on the achievement of
those to the management sponsors of the effort.

 4.6.5. Define Ownership
Automation requires upkeep and analysis to ensure it is working properly. Identifying a
resource that can be called upon to detect and correct issues is critical to continued,
uninterrupted use of automation in testing. Likewise, it is important to identify who will
run the test automation and when it will be run. Often the manual testers assume the
responsibility to execute the automation and do the preliminary debugging if an issue
is found (by manually testing any failures that occur). This helps the manual tester to
engage with the automation and also frees the automation engineers from debugging
issues that may be due to data or environment changes.

 4.7. Test Automation Tools
Early tools depended on recognizing characters that a user entered onto the screen or
via a command line. With the advent of graphical systems, tools evolved to support
coordinate-based positioning and text recognition of fonts and screen characters.
Eventually, tools further evolved to recognize the native objects displayed on the
windows, where multiple object attributes could be verified and the objects themselves
could be accessed for interaction. With the advent of interfaces such as those used

Testing Essentials, Version 2020 39

© Association for Testing and Software Quality Assurance

for web services, tools additionally supported the ability to bypass the UI and call the
function, service, or method directly, often through the API.

Future uses of automation tools will include robotic process automation (RPA),
artificial intelligence (AI) and machine learning to allow the tests to adapt to the
executing software, providing greater coverage and less up-front programming from
the automation engineer.

Test tools cover a range of features, functions and levels of customizability. For teams
with strong programming skills, tools that allow development of purpose-built functions
are appropriate. For less technical test teams, tools that require minimal programming
may be more appropriate. It is important to identify a tool that meets both the needs of
the SUT and the skills of the team.

Testing Essentials, Version 2020 40

© Association for Testing and Software Quality Assurance

 5. Performance Testing – 200 mins.
Keywords
concurrency testing, load test, objectives-based reporting, operational profiles,
performance testing, risk-based reporting, scalability, stress test

Learning Objectives for Performance Testing

5.1 Introduction

None

5.2 The Purpose of Performance Testing

LO-5.2.a (K1) Recall the goals of performance testing
LO-5.2.b (K2) Explain why defining and getting agreement on performance

requirements is important
LO-5.2.c (K2) Explain how performance testing aligns with the SDLC

5.3 Performance Testing Risks, Benefits, and Challenges
LO-5.3.a (K1) Recall the unique challenges of performance testing
LO-5.3.b (K1) Recall the risks of performance testing
LO-5.3.c (K1) Recall the benefits of performance testing

5.4 Performance Testing Approach
LO-5.4.a (K2) Describe the components that should be included in a

performance test plan
LO-5.4.b (K2) Explain the factors to be considered when defining the test

approach

5.5 Conducting Performance Testing

LO-5.5.a (K1) Recall the steps for conducting performance testing
LO-5.5.b (K1) Recall the components that should be checked during

performance test preparation
LO-5.5.c (K1) Recall how performance test results differ from functional test

results
LO-5.5.d (K1) Recall the types of performance test reporting

5.6 Performance Test and Analysis Tools
LO-5.6.a (K1) Recall why tools are necessary for performance testing
LO-5.6.b (K2) Describe the challenges that can be encountered with

performance testing tools

Testing Essentials, Version 2020 41

© Association for Testing and Software Quality Assurance

 5.1. Introduction
Performance is a major quality factor in most systems and applications, regardless of
the computing environment. A system or application may be functionally correct, but if
it fails to deliver the needed performance it is likely to be considered a failure.
Performance testing is one way to measure system performance in advance of
deploying the system.

Performance testing should start at the component (unit) test level and continue until
system deployment. Waiting until the end of a project to conduct performance testing
carries the high risk that performance problems will not be solvable due to time,
money and technological constraints.

One of the most costly and publicized performance failures occurred during the
Facebook Initial Public Offering (IPO), when the NASDAQ stock exchange could not
handle the volume of trading on the day of the IPO. The cause of the failure was
determined to be three lines of code that got into an endless loop. To date, NASDAQ
has paid over $80 million in fines and restitution. In addition, the United States
Securities and Exchange Commission imposed requirements on NASDAQ to help
prevent similar failures in the future [NASDAQ].

 5.2. The Purpose of Performance Testing
Performance testing can have multiple goals and purposes, including:

• Measuring system performance under given conditions

• Determining the maximum concurrent user load or transaction volume a system
can handle before it fails

• Providing information to assist in capacity planning for a system

Significant time and money can be invested in performance testing. In order to obtain
the best return on investment, the testing must be targeted correctly and the goals
clearly defined. This can be difficult since different stakeholders may have varying,
even conflicting, views of “acceptable” performance. In order to be successful, there
must be agreement in the project team regarding what the performance testing will
measure and what will constitute a successful result.

 5.2.1. Defining Performance Requirements and Getting Stakeholder
Agreement
Documenting performance requirements can be challenging. Eliciting the
requirements can be even more difficult. When documented, performance
requirements are normally recorded in over-arching requirements, such as “all system
responses to users that require longer than 3 seconds must display a wait
notification”. In an Agile environment, these requirements may be documented in
specific non-functional Epics.

Testing Essentials, Version 2020 42

© Association for Testing and Software Quality Assurance

Without stakeholder performance requirements, it is hard to know if the observed
levels of performance are adequate, making it difficult for testers to make a reasoned
assessment of test results. A complicating factor in determining system performance
requirements is that the assessment of “acceptable” performance can be subjective.

Getting agreement on performance requirements can be quite challenging because of
the subjectivity of opinions and the cost required to achieve higher levels of
performance. For example, one stakeholder group might feel that a response time of
two seconds is acceptable, while another group might feel that a response time of one
second or less is required. The cost to achieve the one second response time might
be quite high (e.g., 5x improvements in hardware, more robust networks, major
modifications to code or databases), whereas two second response time may be
easily achieved.

 5.2.2. Aligning Performance Testing in the SDLC
As with all forms of testing, performance testing needs to be integrated with the
SDLC. Regardless of the SDLC, full lifecycle performance testing is needed to detect
performance problems early, when they are easiest to fix.

The following activities in an SDLC have key tasks for performance testing:

• During requirements definition, the specific requirements for performance (and
definition of the expected load) should be clearly defined and agreed to by all
stakeholders. This will eliminate debate when the results are reviewed later.

• During design and coding, performance factors must be considered and built
into the design and the subsequent code. Inefficient code or an inefficient
design will be difficult and costly to fix later.

• During integration and system testing, new performance testing opportunities
can appear. Any new integration may introduce inefficiency and potential
performance bottlenecks.

• During acceptance testing, a major objective is to assess performance within
the business or operational context. In some cases, performance testing is part
of contract acceptance testing and operational acceptance testing.

 5.3. Performance Testing Risks, Benefits, and
Challenges
Performance testing has unique challenges, primarily due to lack of understanding of
the complexity and cost of good performance testing. These include the following:

• Getting definition and agreement from stakeholders with regards to acceptable
system performance

• Getting adequate funding for performance testing tools

• Acquiring the best fit solution for a performance testing tool, within the schedule
and budget of the project

• Accurately profiling load levels at given periods of system usage

Testing Essentials, Version 2020 43

© Association for Testing and Software Quality Assurance

• Acquiring skilled test engineers to plan, design and conduct a realistic
performance test

• Building a representative performance test environment

Unless these challenges are met and understood, the performance test effort may
never start or will not be effective. In addition to the above challenges, performance
test efforts have risks that must be considered and mitigated in order to achieve the
expected benefits.

 5.3.1. Risks
Performance testing has the following risks:

• Inadequate performance test design, resulting in inaccurate or incomplete test
results

• Incomplete coverage of protocols and connectivity, resulting in important
aspects of performance testing for a particular system or application being
missed

• Inadequate test environments, resulting in inaccurate test results and
erroneous conclusions

• Inability to apply the performance tool correctly, resulting in inefficient,
inaccurate, and inconclusive tests

• Inadequate coverage of functions, resulting in incomplete test results

• Inadequate amounts of user and data load, resulting in inaccurate and
incomplete test results

• Lack of defined stakeholder requirements for performance, resulting in the
inability to identify performance targets

• Lack of agreement on defined stakeholder performance requirements, leading
to conflicts concerning acceptable levels of system performance

• Lack of appropriate performance metrics, resulting in test reports that are
incomplete or lack depth of meaning.

 5.3.2. Benefits
If the challenges are met and risks mitigated, significant benefits can be expected
from performance testing. These include the following:

• Opportunities to “right-size” the system to handle expected load

• Opportunities to plan mitigation steps if loads exceed expected levels

• Early test results can help define the acceptable levels of performance

• Expectations for future growth can be tested to know if the system will be able
to support it

• System performance weaknesses can be identified and fixed before being
discovered in production

• Long lead time items, such as adding more hardware or improving network
resiliency, can be addressed in adequate time before a production launch

Because performance issues may be expensive or time-consuming to rectify,
identifying them early on allows the greatest chance for mitigation before an exposure

Testing Essentials, Version 2020 44

© Association for Testing and Software Quality Assurance

in the production environment. Performance testing is often intended to merely
confirm expectations that the overall system is fit for purpose, but frequently results in
identifying significant problems that must be corrected.

 5.4. Performance Testing Approach
Performance testing often requires a separate planning effort. This effort is focused on
the particulars of the performance testing, such as sizing the test systems, procuring
resources and planning uninterrupted testing time.

 5.4.1. Defining the Test Plan
Performance test plans generally include the following information:

Scope
The correct setting of scope in performance testing is a critical activity to ensure that
the targeted objectives are met. The scope is often framed by the following:

• Functionality – What features will be included or excluded from the
performance testing?

• Architecture – Which aspects of the system architecture (e.g., networks, APIs,
devices, databases) will be included?

• Transactions – What typical user transactions will be included in the testing?

• Users – Which classes of users should be included based on selection factors
(e.g., location, type of transactions, demographics, concurrent usage)?

• Data – How much data should be used and how should it be accessed?

Strategy and Approach
The performance test strategy and approach can define the way performance testing
is to be conducted. For example, an organization might decide to outsource
performance testing if it lacks the tools and skilled people to conduct the testing on its
own.

Risk Assessment
As in much of testing, performance testing can also be risk-driven to focus testing on
areas of the system, or on functions and transactions, that carry the highest risk, such
as those with the highest use.

Definition of Test Objectives
Performance test objectives describe, at a high level, what the performance test is
intended to achieve. Oftentimes, these are worded as performance objectives to verify
and/or validate. For example, “Verify the system response time is 1 second or less at
peak load times.”

Responsibilities
Team roles must be defined, along with roles and responsibilities for those external to
the team and the organization. Performance testing often requires the support of

Testing Essentials, Version 2020 45

© Association for Testing and Software Quality Assurance

system architects, database analysts, network engineers and other specialists who
can participate in troubleshooting and system tuning.

Reporting Metrics
Metrics have a very important role in evaluating performance test results. It is
important to define which metrics are most meaningful to stakeholders – both
business and technical – and ensure those metrics are tracked by the selected
monitoring tools. Some metrics, such as average response time, may not be
meaningful or as useful as the response time for 90% of the users. This will help
eliminate any outliers that can skew the average.

 5.4.2. Defining the Test
Depending on the formality of the environment, the test approach may be defined as
part of the performance test plan or defined separately. The test approach must
consider the following:

Environments
Test environments are a key concern in performance testing because of the need to
obtain representative results. The challenge is that full-scale dedicated test
environments are often difficult to build due to cost and complexity. One possible
alternative is to use a cloud-based test environment that can be rapidly scaled to
simulate production configurations.

Unfortunately, it is not wise to simply predict performance at higher levels of scale
based on lower system capacities. It is normally necessary to apply realistic load with
realistic system conditions.
In some cases, such as in new system development, the system under development
can be tested in the same system configuration that will eventually become the actual
production system.

Load and Throughput Profiles
To accurately design performance tests, current and predicted profiles must be
understood for both load levels and data throughput, such as peak load times and
load levels. A common way to know performance profiles is to measure and study
user behavior and levels as captured in system analytics.

Operational Profiles
Operational profiles describe the functions users are expected to perform on the
system and the frequency of these activities. These can be seen as simple functions
or wider-ranging workflows for end-to-end transactional testing of the system,
sometimes called “transaction threads”. Operational profiles are implemented as
scripts to be executed by virtual users, creating an accurate environment for
measuring performance.

Test Data

Testing Essentials, Version 2020 46

© Association for Testing and Software Quality Assurance

Representative amounts and types of test data are often at the heart of performance
testing. This data may be generated by tools or copied from a production environment
if no private data is involved.

 5.5. Conducting Performance Testing
In order to run the performance test, several other steps are needed. The tests must
be prepared (including the environment and data), they must be executed, the results
must be evaluated and reported, and there may be a need for on-going monitoring.

 5.5.1 Test Preparation
Prior to test execution, the following components should be verified as ready for the
testing:

Test Environment
It is often helpful to run preliminary tests to make sure basic test environment
elements are in place and working correctly and that proper access is available. It is
also important to validate that all co-existing applications and systems that could
cause a performance load are in place and operational, as these systems can also
place performance load on the test environment.

Test environment capacities need to be verified as correct. For example, CPU levels,
database size and network configuration all have an impact on system performance.

Data
All databases and files should be populated with the designed volumes of test data to
ensure the tests are not blocked due to insufficient or incorrect data. Generating this
data and verifying its correctness must be conducted prior to performance test
execution.
Testware (Test Scripts, Procedures, etc.)
As part of test preparation, it is vital that the designed and implemented testware is in
place and executing correctly as designed. An effective activity is to conduct a
preliminary test using a representative sampling of test procedures to verify functional
correctness and data accessibility and accuracy.

 5.5.2. Test Execution
If the preparatory steps have been completed, then test execution becomes a matter
of running the tests in the tool and monitoring the execution. Monitoring features are a
part of many performance test tools. However, the interpretation of test results
requires human intelligence.

Sometimes, it is only by observing test results in real-time that some performance
anomalies may be identified. For example, it is common in a performance test to ramp
up load levels. In some test tools, the impact of increasing system load can be seen
by analyzing graphical representations after the test is complete. However, other tools

Testing Essentials, Version 2020 47

© Association for Testing and Software Quality Assurance

may primarily display test results in a text-based format. In those cases, it is helpful to
observe system behavior and metrics as the test is in progress.

 5.5.3. Test Evaluation
In contrast to functional testing, where test outcomes can be evaluated as “pass” or
“fail”, performance test results tend to be more comprehensive and informative. The
main question that performance testing seeks to answer is “Does system or
application performance meet stated performance goals or requirements?”

It is important to understand that performance testing is highly dynamic and
dependent on many factors, such as user load, workflows performed, system capacity
(CPU speed, database efficiency, code efficiency, and networking configuration), and
system configuration. Changing any of the variables can significantly affect the
results.

Performance testing is a snapshot view. Even a small change to the system can
cause improvements or degradation of performance. For this reason, performance
testing should be performed throughout system development and after release to
production.

Performance testing is sometimes used to assess the system’s capabilities. While
load testing can determine performance levels at given load levels, stress testing can
reveal the maximum capacity the system can handle based on a given configuration.
This information can help capacity planners to know if system upgrades will be
needed, and if so, when they may be needed.

 5.5.4. Test Reporting
The main deliverable of performance testing is the reporting of the test results.
Performance test reporting will vary depending on the audience and the purpose of
the test. Since each stakeholder group has differing levels of technical understanding,
test results need to be presented in ways that each group can understand and find
meaningful.

Risk-based Reporting
As in other forms of testing, risk-based reporting can help identify which aspects of
system performance may carry the most relative risk. This risk-based view of
performance test reporting can help stakeholders understand where to focus efforts
for the most effective system implementation decisions.

Objectives-based Reporting
In objectives-based reporting, performance test results are reported with traceability to
performance test objectives, such as the expected response time to a specific user
action. This allows testers and stakeholders to know whether or not performance
objectives have been met as demonstrated by the success or failure of performance
tests.

Testing Essentials, Version 2020 48

© Association for Testing and Software Quality Assurance

 5.6. Performance Test and Analysis Tools

 5.6.1. Why Tools are Essential for Performance Testing
Performance testing is one type of testing that is not feasible without tools. Tools are
used for the following:

• Creating simulated concurrent user load – This simulated load is used for
concurrency testing. It is more precise and does not require as many resources
as trying to test with large numbers of people. Concurrency testing is used to
determine how the system will perform with a consistent load of virtual users
who are “concurrently” using the system.

• Sustaining high levels of load – Even if it was possible to generate enough load
with actual people, it would be difficult to sustain the load long enough to get a
good measurement or to allow repetition of the test.

• Accurately measuring load levels and system response time, CPU utilization,
memory allocation, etc. – It takes more than a stopwatch to measure response
times. Most performance test tools have features to measure aspects of the
SUT that directly impact performance. For tools that lack robust monitoring
functionality, it is possible to obtain tools that independently monitor test
performance.

• Repeating performance testing whenever needed – Performance tests must be
repeated as changes are made to the application and system. Often, during
performance testing, system tuning takes place to improve the performance.
This requires re-execution of the tests to ensure that the expected improvement
has been realized.

 5.6.2. Tool Challenges
Although tools are needed for performance testing, there are some challenges to
overcome:

• Performance test tools do not know what to test – The performance tester must
determine which functions to test, how many concurrent users to simulate,
which data to use, and other conditions to achieve the test objectives.

• The environment has to be representative – For many people, building a
performance test environment may be the greatest challenge of all. Adequate
performance test environments may require an investment in hardware,
software, people, and tools – all scalable to the level of production use. Cloud-
based virtual test environments have become an attractive alternative to
physical environments in some cases.

• High volumes of test data will be needed – This may require the use of test
data generation tools or strategies to modify a copy of existing production data.

• Expertise is needed – Performance testing requires skills and experience not
commonly found in many organizations. It is common to obtain outside
consultation when first starting to plan and conduct performance testing.

• Tools can be expensive – The most robust and popular performance test tools
can be very expensive. While new tools in the marketplace help to keep pricing
competitive, organizations that have large investments in performance test

Testing Essentials, Version 2020 49

© Association for Testing and Software Quality Assurance

tools may be less inclined to switch to more affordable tools. Even open source
tools have a cost in learning and maintenance.

Selecting the proper tools requires evaluating a number of factors including long-term
cost, training requirements, vendor reliability, etc. Because performance tools may be
significantly expensive, it is important to consider the life expectancy of the tool, the
ROI and the likely future requirements for tooling.

Testing Essentials, Version 2020 50

© Association for Testing and Software Quality Assurance

 6. Cybersecurity Testing – 200 mins.
Keywords

cyberattack, cybersecurity, cybersecurity testing, fuzzing, cybersecurity controls,
social engineering, system hardening, threat actors, threat intelligence, threat
modeling, vulnerabilities

Learning Objectives for Cybersecurity Testing

6.1 Introduction
LO-6.1.a (K1) Recall the definition of cybersecurity
LO-6.1.b (K1) Recall the cybersecurity attributes of assets
LO-6.1.c (K1) Recall the function of cybersecurity controls

6.2 The Purpose of Cybersecurity Testing

LO-6.2.a (K2) Explain the necessity to both verify requirements and validate
the system during cybersecurity testing

6.3 Cybersecurity Differences
LO-6.3.a (K2) Explain the unique differences of cybersecurity testing

6.4 Cybersecurity Testing Approaches

LO-6.4.a (K1) Recall when cybersecurity test planning should take place
within the SDLC

LO-6.4.b (K2) Explain how cybersecurity testing contributes to risk
management

LO-6.4.c (K2) Explain how testing can enhance the stages of a cybersecurity
effort

6.5 Conducting Cybersecurity Testing
LO-6.5.a (K1) Recall why cybersecurity testing must be pre-authorized
LO-6.5.b (K2) Explain how white-box testing is used in cybersecurity testing
LO-6.5.c (K2) Explain how black-box testing is used in cybersecurity testing
LO-6.5.d (K1) Recall the controls that can be targeted by cybersecurity tests

6.6 The Environment of Constant Change

LO-6.6.a (K1) Recall ways to keep up to date with cybersecurity and
cybersecurity testing practices

Testing Essentials, Version 2020 51

© Association for Testing and Software Quality Assurance

 6.1. Introduction
Cybersecurity was commonly called information security or information assurance -
the latter emphasizing the need to be confident or assured that digital resources are in
fact secured. Cybersecurity refers to protecting computer systems, including their
electronic data, software and hardware, from theft or damage as well as from
disruption or misdirection of the services they provide.

Valued data or computerized processes are referred to as assets. Their security
attributes typically are described as confidentiality (and its corollary, privacy), integrity,
and accessibility: the so-called “CIA” triad. Confidential material should only be
entrusted to designated parties for specific purposes, respecting the owner’s privacy.
The integrity of an asset is dependent on the assurance that it has not been tampered
with via unauthorized access. When data or a service is needed, it needs to be
accessible only to authorized users.

Cybersecurity addresses the need to protect the integrity and confidentiality of digital
assets, as well as the accessibility of online processes. Computerized systems in the
past suffered almost all of their failures due to defects in design or implementation.
Today, however, so-called threat actors (malicious individuals or groups) conduct
cyberattacks to compromise systems by deliberately misusing them. Critical
infrastructures – including energy, communication, transportation, and finance – are
now heavily computerized; defenses against online assaults are the essential
responsibility of cybersecurity.

Protection of system resources and processes is the function of cybersecurity
controls. These controls range from straightforward precautions such as account
passwords to sophisticated automated detection and response mechanisms. Different
cybersecurity controls may be designed to reduce the likelihood of successful attacks
or to minimize the damage done if any attacks succeed. None of these protections are
flawless, hence, anyone wishing to compromise computerized systems will be looking
for weaknesses, known as vulnerabilities, in the controls.

Consider the situation in terms of the classic elements of criminality: motive, means,
and opportunity. Vulnerabilities in cybersecurity controls are the opportunities -
success depends on bypassing these controls. Malicious individuals and groups might
be motivated by greed, revenge or ideology. But they will need knowledge, skills, and
resources – the means of attacking – to take advantage of an opportunity and
successfully compromise security. The strength of their motivation determines their
persistence or willingness to risk detection.

 6.2. The Purpose of Cybersecurity Testing
Cybersecurity testing probes systems to reveal potential failures in furnishing the
desired level of security. As with any other testing, cybersecurity testing reveals the

Testing Essentials, Version 2020 52

© Association for Testing and Software Quality Assurance

presence of defects but cannot confirm their absence. It provides value both as
verification (“Was it built right?”) and as validation (“Was the right thing built?”).

Where security requirements have been specified, testing can verify how adequately
these requirements are satisfied. Threat modeling, based on threat intelligence,
anticipates the nature of assaults that might be encountered in the operating
environment of the system. System designers provide corresponding controls, and
testing can verify the extent to which those controls provide the specified protection.

Specification of what a system should do is often less difficult than elaborating what
the system should not do. Beyond defining and confirming controls, one must probe
for unacceptable behaviors and validate proper functioning in an operational
environment. To be realistic and meaningful, these tests need to model the projected
capabilities of realistic adversaries, as identified through threat modeling.

 6.3. Cybersecurity Differences

• It must be responsive to a rapidly changing environment – Vulnerabilities
in complex interrelated systems are usually subtle and may lie dormant for
years before suddenly being exposed. Systems also evolve by the modification
or addition of features and by new interactions with other hardware and
software, any of which can introduce new vulnerabilities.

• The adequacy of established controls is under constant active probing –
Threat actors of widely varying motivations, capabilities, and resources fill the
arena. When they can expose the weakness of a control they will promptly seek
to exploit it and, in some cases, expose it to other threat actors. The ability and
resources possessed by threat actors will only increase, especially as state-
sponsored attacks increase.

• Cybersecurity testing must address detection, response, and recovery after
controls fail – It needs to establish the resilience of the system when
vulnerabilities are successfully exploited. It must evaluate how well risk mitigation
supplements risk avoidance.

• Human shortcomings are at least as prominent as technological challenges
– Exploits through various low-tech means (known as social engineering) are a
leading cause of security failures. Countermeasures must address policies,
procedures, and awareness campaigns.

 6.4. Cybersecurity Testing Approaches
Of all the quality attributes, security might be the most difficult to “bolt on” or “patch in”
after substantial software development has already been done. Cybersecurity test
planning must contribute to the design and implementation of a system as early as
possible. It should reinforce secure design and coding best practices, and include a
risk analysis that is focused on cybersecurity.

Testing Essentials, Version 2020 53

© Association for Testing and Software Quality Assurance

Risk exists when a threat might take advantage of a vulnerability. Lowering the
probability of that occurring is known as risk avoidance, and decreasing the
consequences when it does occur is known as risk mitigation. To go one step further,
risk mitigation must also be tested by probing the responses that occur when a control
fails. By revealing otherwise undetected weaknesses, cybersecurity testing can direct
efforts that support risk avoidance. The goal is to reduce overall risk exposure (and its
uncertainty) to an acceptable level.

Potential security weaknesses in isolated system components may be investigated by
static techniques. Manual or automated inspections, such as port scans and code
scans, can provide early identification of insecure design patterns or coding practices.
After a completed system is installed in its operational environment, additional
dynamic security issues will arise (i.e., issues that can only be seen during execution)
and must also be addressed.

Testing can enhance each stage of a cybersecurity effort as follows:

• Identify – Confirm identification, categorization and prioritization of the data and
processes to be safeguarded (note that an adversary might value these assets
differently and have different priorities)

• Protect – Analyze the protection of each asset category with corresponding
controls that will stop or slow attempts to compromise the system

• Detect – Demonstrate the ability to detect intrusions and provide timely
actionable analysis

• Respond – Exercise the responses and determine how well affected parties are
notified, damage is minimized, and further access is shut off

• Recover – Demonstrate the speed and extent of recovering operational status
and restoring data and confidence

 6.5. Conducting Cybersecurity Testing
A testing project should establish terms of engagement that define the nature and
scope of activities. If a live system is to be tested, it should specify how much notice
will be given and to whom. All cybersecurity testing must be pre-authorized in writing
by appropriate management to avoid testers being mistaken for malicious insiders
(which can carry criminal penalties).

Cybersecurity testing covers the full software development lifecycle, so it will parallel
and reinforce secure software engineering practices. It may be performed or be a part
of reviews and audits at key specification, design, implementation, and integration
stages. It will evaluate the performance of threat modeling and static code analysis.

Cybersecurity testing, like other types of testing, can and should be conducted in two
different modes: “black-box” - which attends to external system behaviors; and “white-
box” (or clear-box) – which utilizes structural knowledge of the as-built system. In
black-box testing, an “outsider” will gather information via system reconnaissance.
They will use that information to craft attacks that can be mimicked in penetration

Testing Essentials, Version 2020 54

© Association for Testing and Software Quality Assurance

testing to see what they can attack. In white-box testing, the “insider” threat is
modeled by treating the system’s internals as visible and thus uniquely exploitable.

A wide range of testing approaches are available. One automated black-box
technique involves fuzzing - inserting random variations of expected input values to
detect sensitivities that might be exploited. Another mode of testing is derived from the
practice of military exercises. A designated “red team” of attackers (composed of
internal or external experts) is pitted against a “blue team” of defenders (drawn from
internal operations personnel). The exercise may be performed on a facsimile of the
SUT, or may be a “tabletop” exercise without a real system.

Targeted tests should probe the adequacy of specific controls. These may include:

• Policy and procedure enforcement

• System hardening (reducing the attack surface by eliminating as many security
risks as possible)

• Access control mechanisms for authentication (who you are), authorization
(what you can do), and accountability (what did you do)

• Input validation

• Encryption

• Error and exception handling

• Intrusion detection

• Malware scanning

• Resistance to social engineering

 6.6. The Environment of Constant Change
Best cybersecurity and cybersecurity testing practices may be found in various
technical guidance documents and consensus standards, as well as through
professional organizations and educational institutions. “Best practices” may be
“required practices”, if mandated by government laws. Regulatory requirements may
also apply to specific financial, medical, transportation, energy or other sectors. In
such settings, the adequacy of testing would be judged by the extent to which it
confirmed compliance with applicable mandatory requirements.

New technologies and new applications of existing technologies will continually
introduce new security concerns. Seemingly stable, long-time tools and applications
often reveal long-time vulnerabilities under the scrutiny of determined adversaries.
External laws and regulations, as well as user expectations, change over time too.
Keeping up-to-date with changes in these requirements and best practices, as well as
technological advances, should be accomplished through ongoing professional
development - reading, conversing and attending events with fellow practitioners.

Testing Essentials, Version 2020 55

© Association for Testing and Software Quality Assurance

7. Usability Testing – 150 mins.
Keywords

accessibility, personas, usability, user experience, user interface, Web Content
Accessibility Guidelines (WCAG)

Learning Objectives for Usability Testing

7.1 Introduction
LO-7.1.a (K2) Explain the difference between efficiency, effectiveness and

satisfaction in usability testing

7.2 Focusing the Usability Testing

LO-7.2.a (K1) Recall sources for determining the needs and expectations of
the users

LO-7.2.b (K2) Explain why depth or breadth testing would be used

7.3 Usability Test Participants
LO-7.3.a (K1) Recall the roles of professional testers and end-users in

usability testing

7.4 Usability Test Planning and Design

LO-7.4.a (K1) Recall the use of personas in usability testing
LO-7.4.b (K1) Recall the purpose of user experience evaluation

7.5 Scheduling and Conducting the Tests
LO-7.5.a (K2) Explain when usability testing should occur in the SDLC
LO-7.5.b (K2) Describe how usability tests are conducted
LO-7.5.c (K2) Explain how results are gathered from usability tests

7.6 Standards

LO-7.6.a (K1) Recall standards that support usability testing
LO-7.6.b (K1) Recall the components of the usability software quality

characteristic

7.7 Accessibility
LO-7.7.a (K1) Recall the meaning and purpose of accessibility testing
LO-7.7.b (K2) Summarize the common references and standards for

accessibility testing

Testing Essentials, Version 2020 56

© Association for Testing and Software Quality Assurance

 7.1. Introduction
Usability and accessibility of software are important quality characteristics and may
determine whether or not the software is successful. Usability testing is conducted to
evaluate how well a system can be used by the target users to accomplish a specified
goal. Accessibility testing, which is considered a subset of usability testing, is
conducted to ensure that users of all abilities can successfully use the product.

Efficiency (how much effort is required to accomplish a goal?), effectiveness (is the
desired result achieved?) and user satisfaction (is the user “happy” with the
software?) are factors that are often considered during usability testing. In addition,
proper accessibility testing may be required as part of the overall testing project if
accessible software is mandated by law. The results of both types of testing can then
be used to improve the design to better meet the needs of the users.

The timing and scope of usability and accessibility testing can vary widely from project
to project and, depending on the areas of a product targeted for evaluation, may be
difficult to schedule and fit into the project lifecycle. Because of this, it is important to
understand the goals of the tests before starting, consider when the testing should
occur, and verify that there is adequate time in the schedule to plan the tests, review
the results, and consider what changes should be made to the product.

 7.2. Focusing the Usability Testing
In order to conduct effective usability testing, the tester must understand the needs
and expectations of the users. This may include gaining an understanding of the
product itself, as well as the day-to-day activities of the users. This information may be
gathered from the following sources:

• Process maps

• Business cases

• Use cases
• Interviews

• Observation

• User guides and documentation

• Expert users or domain experts

Usability testing should concentrate on areas of the software that will be most
frequently used and are most important to the user. If there is an existing product to
use for comparison, complex user interfaces and existing features with a history of a
high number of technical support issues should also be evaluated, to avoid
perpetuating any problems.

Prioritization is important because the scope of usability testing is often limited by
project schedule and budget. For new software, where usage is anticipated but not
known, sampling may be done to allow testing across the overall User Interface (UI).

Testing Essentials, Version 2020 57

© Association for Testing and Software Quality Assurance

This type of testing will provide information regarding the expected user experience
and can serve as a breadth-based test. For areas where extensive usage is
expected, depth-based testing is appropriate. By approaching the testing with a
calculated combination of breadth and depth testing, the best coverage can be
obtained in the shortest period of time.

 7.3. Usability Test Participants

In larger organizations, usability is a specialized discipline that leverages usability
experts with training in psychology and design. Ideally, these experts also have some
knowledge of software development and at least some exposure to testing. When
professional testers conduct usability testing, they often work closely with usability
experts to design tests and check for standard usability characteristics (e.g.,
navigation, number of mouse clicks to accomplish a task, or screen layouts). This type
of controlled testing should be augmented with testing by real (or potential) users
because users know what they expect the software to do, what they need it to do and
how they expect it to work.

For a given project, the usability testers should represent the skill levels and
knowledge of the actual users. If there will be Subject Matter Experts (SMEs) using
the software, they will have a different approach than a novice user. Both of these
user types should be considered during usability testing.

While both types of testing are important, the feedback from real users is sometimes
given more credence than feedback from professional testers, since the users often
have actual experience with the product. This is particularly true when an observation
is subjective (e.g., “the layout is confusing”).

 7.4. Usability Test Planning and Design
Test planning is recommended for usability testing, in order to define the test
approach, identify the goals, and to gain agreement among different stakeholders
regarding the scope and expectations. With formal usability testing, guidelines for
observer behavior are usually described in the test plan. Observers may be expected
to not interfere, to provide help only when requested or to step in when the user
appears to be getting frustrated.

As part of usability testing, users are often categorized into personas. A persona is a
representation of a type of user and is often given specific characteristics (such as
age, gender, profession, etc.). These personas are used during usability design to
help ensure that the needs and desires of all targeted user sets are met. During
testing, the activities and reactions of real people can be evaluated against the
personas that were used during design.

Another aspect of usability testing is user experience (UX) evaluation, which should
also occur as early as possible. User experience refers to a person’s perceptions of

Testing Essentials, Version 2020 58

© Association for Testing and Software Quality Assurance

and responses to the software before, during and after usage. For example, happy
anticipation of the use of the software is a UX characteristic. Brand image and
presentation of the software contribute to user satisfaction. Like usability, the user
experience must be designed into the software in order to be achieved in a cost-
effective manner.

 7.5. Scheduling and Conducting the Tests

 7.5.1. Early and Continuous Testing
As with all forms of testing, it is less expensive to correct usability issues when they
are uncovered early in the SDLC. Early testing is often conducted as the software is
being designed (sometimes called formative testing as the software is being
“formed”). This allows users and specialists to review the design before it is coded. It
may be done with written descriptions, wireframes (low fidelity) or prototypes (high
fidelity).

Ideally, usability testing is a continuous activity, performed frequently during software
design and development. This will provide timely feedback and will help influence the
design as the project progresses. In an Agile methodology, the product owner
normally assists with usability testing during iteration testing to ensure that the product
meets expectations.

 7.5.2. Conducting the Usability Test
Formal usability tests are typically conducted in a usability lab, which may be
equipped with video and audio recording devices, two-way mirrors and a separate
seating area for observers. A formal lab may have software installed which tracks eye
movements of the subjects and records the interactions of the subject with the
product. Less formal testing may be conducted in an office setting or even a test lab
environment. Ideally, the tests are conducted in an environment that closely mimics
the user’s work environment. This will provide a more realistic experience (e.g.,
lighting, noise, and distractions) and will help the user to better evaluate the software.

Usability tests are sometimes conducted by having the subjects perform tasks that
have been designed in advance by a usability tester. Testing may also be conducted
by assigning general tasks to the users and having them figure out how to accomplish
those tasks on their own. User manuals and process documents may be used as
guidelines for testing and the testing is sometimes used to review the correctness of
the documents.

During usability tests, subjects generally are asked to vocalize what they are thinking
while they are working through their tasks (i.e., think out loud), express any confusion
that they may have and talk about what they are doing. If observers are present in the
room during the usability tests and are required to be silent and passive, they can give
no help or feedback to the participants. This is an important consideration as it is
sometimes difficult for the observers to avoid influencing the tests.

Testing Essentials, Version 2020 59

© Association for Testing and Software Quality Assurance

 7.5.3. Gathering Results
Feedback from the tests are usually gathered in two ways: defect reports and
questionnaires/surveys.

Where usability or user interface defects are identified, the normal defect lifecycle
should be followed, with particular attention paid to maintaining consistency. For
example, if users object to the way a button is displayed, all buttons should be
reviewed to determine if broader changes are needed.

Questionnaires and surveys are used to gather feedback regarding the effectiveness
and efficiency of the software and the user’s satisfaction with their experience. These
surveys may also extend into the UX areas (e.g., emotions, perceptions, preferences,
image).

 7.6. Standards
There are several international standards that deal with usability. The following are
commonly used:

ISO 9241-210 discusses human-centered design. This is based on understanding the
expected use, specifying requirements, producing solutions, evaluating the solutions
and eventually designing the best solution to meet the usability requirements.

ISO 25010 describes the software quality characteristic called usability. This breaks
usability into a set of characteristics as follows:

• Appropriateness recognition – Can the user determine if the software is
appropriate for their needs?

• Learnability – Can the user figure out how to accomplish a task and are they
able to apply that knowledge the next time they want to accomplish the same or
a similar task?

• Operability – Is the software easy for the user to operate and control?

• User error protection – Does the software help prevent the user from making
errors?

• User interface aesthetics – How pleasing or attractive is the software to the
user?

• Accessibility – Can the software be used by people with a wide range of
capabilities?

These two standards help to guide usability design, as well as usability testing.

 7.7. Accessibility
Accessibility testing is considered a subset of usability testing. Accessibility is the
degree to which a component or system can be used by people with the widest range
of characteristics and capabilities to achieve a specific goal in a specified context of

Testing Essentials, Version 2020 60

© Association for Testing and Software Quality Assurance

use. While sometimes targeted at specific disabilities, such as color blindness or
hearing impairment, accessibility has generally become a broadened concept to
ensure that software works for everyone, with or without disabilities.

Accessibility compliance requirements may drive accessibility testing goals and
methods. It is important to clearly identify any pertinent legislation or regulations that
apply, such as the ADA (Americans with Disabilities Act) and Section 508, before
planning the testing, as specific goals may be defined in the regulations. Section 508
Compliance Testing, an amendment to the United States Workforce Rehabilitation Act
of 1973, is a federal law mandating that all electronic and information technology
developed, procured, maintained, or used by the federal government be accessible to
people with disabilities.

An internationally used reference for accessibility testing is the Web Content
Accessibility Guidelines (WCAG). These are widely used guidelines that were
published by the Web Accessibility Initiative (WAI) or the World Wide Web Consortium
(W3C). There are three conformance levels defined in WCAG: A, AA, and AAA, with
AAA being the most difficult to achieve [WCAG].

Accessibility testing tools are available and can be used to quickly scan code to
identify compliance issues. These tools will look for such items as text descriptions for
all graphic items, usage of colors and font sizing. The tools are frequently updated
and provide coverage for different accessibility areas. Research is needed to find the
best tool for a particular situation. Accessibility tends to be a specific area of testing
expertise because it requires a deep understanding of the regulatory requirements
and the tools that will determine conformance to the standards.

Testing Essentials, Version 2020 61

© Association for Testing and Software Quality Assurance

 8. Testing Connected Devices
– 180 mins.
Keywords

connected devices, emulators, lightweight testing, simulators

Learning Objectives for Testing Connected Devices

8.1 Introduction

None

8.2 Connected Devices

LO-8.2.a (K2) Understand the challenges with connected device testing

8.3 Environments and Tools
LO-8.3.a (K2) Understand the differences between simulators and emulators,

and which is appropriate for a given situation
LO-8.3.b (K1) Recall how test automation tools can assist in connected device

testing

8.4 Quality Characteristics

LO-8.4.a (K1) Recall why understanding user expectations is particularly
challenging for connected devices

LO-8.4.b (K1) Recall why requirements for quality characteristics must be
identified early in the lifecycle

LO-8.4.c (K2) Explain why usability is an important quality characteristic to
consider in connected device testing

LO-8.4.d (K2) Explain why performance is an important quality characteristic
to consider in connected device testing

LO-8.4.e (K2) Explain why security is an important quality characteristic to
consider in connected device testing

LO-8.4.f (K2) Explain why interoperability is an important quality characteristic
to consider in connected device testing

LO-8.4.g (K2) Explain why accuracy is an important quality characteristic to
consider in connected device testing

LO-8.4.h (K2) Explain why reliability is an important quality characteristic to
consider in connected device testing

8.5 Lightweight Testing

Testing Essentials, Version 2020 62

© Association for Testing and Software Quality Assurance

LO-8.5.a (K2) Describe how lightweight testing can be advantageous in
connected device testing

 8.1. Introduction
The world of connected devices is expanding. What started with mobile phones soon
became smart phones and tablets, then blossomed into the Internet of Things (IoT).
As software has adapted to be quicker and smaller, testing must also adapt to be
quick and lightweight. That said, good testing practices still apply and quality
characteristics are still important to the users. However, it is important to remember
that users have expectations that their mobile applications and IoT devices will “just
work”.

 8.2. Connected Devices
Devices in the connected world vary from smart phones to refrigerators, from tiny
humidity detectors to cars. Anything that is capable of supporting an Internet enabled
component is capable of joining the IoT. The same software may be supported on a
variety of devices and operating systems (OSs), making compatibility testing more
challenging and future-proofing difficult. As the industry leaps forward, backward
compatibility is often receiving less emphasis when actually more is needed. There is
an expectation from users not to be forced to upgrade in order to take advantage of
new features and applications.

Testers can no longer expect to have access to all the devices that will use the
software under test. Selecting a representative sample set is a critical part of defining
test coverage and risk mitigation. Just because the software runs on a refrigerator
allowing the user to increase or decrease the temperature remotely does not mean
that all models of refrigerators need to be tested. It is important for testers to
understand what exactly is to be tested. Is it the device that provides the connectivity?
Is it the response of the target device? Is it the communication between the two?
Realistically, it is all of these, but if all refrigerators use the same communication
interface with the Internet device, then testing one may be sufficient (i.e., applying
equivalence partitioning).

 8.3. Environments and Tools

The proliferation of devices supported by Internet appliances has resulted in a
plethora of tools and simulators/emulators that can be used for testing. This reduces
the need for having a large set of devices available for testing and can greatly speed
up manual testing and the development of test automation. Device labs are available
for popular devices, such as smart phones, and new simulators/emulators are
constantly being created. It is always good practice to verify the results from a
simulator/emulator against a real device, but the majority of the testing does not
require the more expensive real devices.

Testing Essentials, Version 2020 63

© Association for Testing and Software Quality Assurance

Simulators generally provide a standard response to various inputs and “simulate” the
interaction with a real device at the software level. Emulators go a step further and
“emulate” the responses of the hardware device as well as the software running on
that device. For example, testing an application’s interactions with a smart phone’s
gyroscope requires an emulator, whereas testing interaction with the device’s email
application can be done with a simulator. Similarly, simulators in the form of service
virtualization can be used to simulate a web service’s interaction with an application.

Test automation tools are quickly adapting to the IoT and mobile device market. Many
of these tools will interact with simulators and, sometimes, even include their own
simulators. Simulators for compatibility testing, such as cross-device or even cross-
browser, are commonly supported by test automation tools. The tendency is for these
automation tools to be more lightweight in features than the traditional client/server or
web services tools. Cost is always a consideration and the open source market
quickly adapts to the needs for new and purpose-built tools.

Even the best simulators/emulators cannot simulate/emulate everything. There are
user actions, such as a complex set of gestures, that must be tested on a real device.
It is important for the tester to determine which tests are best conducted with which
environment. Generally a mix of simulators/emulators and real devices will yield the
most accurate result for the least cost.

 8.4. Quality Characteristics
While quality characteristic testing is important for all types of software, there are
some unique needs for quality characteristic assessment when dealing with
connected devices. One of the most difficult aspects of connected device testing is
defining the users’ expectations. The user group for an application can be quite large
and the expectations may vary dramatically, even within the target users. It is
particularly important that the requirements for the quality characteristics are clearly
defined in a measurable way in the requirements or acceptance criteria for the
software. With all quality criteria, there is a range of “acceptable”. Defining and
documenting this range early in a product’s lifecycle is particularly important for
connected devices. By defining the criteria for the quality characteristics at the
beginning of the project, all architecture, design and implementation decisions can be
made to align with and fulfill those objectives.

While all quality characteristics are important, the following characteristics are
particularly important with connected devices:

• Usability

• Performance

• Security

• Interoperability
• Accuracy

• Reliability

Testing Essentials, Version 2020 64

© Association for Testing and Software Quality Assurance

 8.4.1. Usability
As connected devices become more integral to modern life, users expect “good”
usability and learnability. Particularly for downloaded applications for smartphones,
users expect software to be attractive, inviting, easy to use, easy to understand, and
enjoyable. Users are becoming less patient with software that does not provide a
good user experience. This can result in a product that is functionally sound being
rejected by the users because it does not provide the expected feedback (e.g.,
prompts and sounds). Of course, being functionally sound is still the basic building
block of software quality, but the ease with which a new user can and wants to work
with an application often determines the market share. See Section 7 for more about
usability.

 8.4.2. Performance
Performance criteria tend to be loosely defined and are often identified when a
product does not meet expectations. While this is true for any software product, it is
apparent for applications for connected devices which may have limited capability
(memory, bandwidth). Ideally, the performance criteria should be defined and
captured early in the requirements phases of a project. Defining these criteria, setting
up the proper personas and benchmarks, and testing to ensure the criteria are met on
the target device, are critical for the success of a connected product. It might be
acceptable for a refrigerator to be slow to respond to a request to decrease
temperature, but it is unacceptable for a GPS-based guidance application on a smart
phone to not respond in time for a driver to make a turn.

Another variable with connected devices is the possibility of a lack of connectivity.
This can significantly impact both functionality and performance. A poor connection
can result in poor performance. A product may not be able to control the quality of the
connection, but it can control its response to poor, intermittent or non-existent
connections. See Section 5 for more about performance.

 8.4.3. Security
Connected devices are sometimes used for safety-critical applications as well as for
financial transactions. Cybersecurity testing is difficult with the shortened development
cycles of connected devices, but it is a critical component of a quality product.
Architecting, developing, and testing for security must occur throughout the
development lifecycle, as there will rarely be enough time at the end of development
for thorough cybersecurity testing (and any necessary corrections/changes).

It is important to understand the expected and potential usage of an application
running on a connected device. Is the GPS-based guidance application used to get to
the mall or to direct ambulances to emergency scenes? Is a web-monitored intruder
alarm used to guard the refrigerator from marauding teenagers or to protect a
pharmacy? Seemingly simple devices can easily be used in safety-critical situations,
necessitating the highest levels of security testing. Like quality, security must be built
into the product right from the start.

Testing Essentials, Version 2020 65

© Association for Testing and Software Quality Assurance

Connected devices have unique security risks. For example, an attacker can gain
access through man-in-the-middle attacks by exploiting Bluetooth vulnerabilities of the
device. Using connected devices with public Wi-Fi hotspots can lead to security
vulnerabilities that would not be experienced on a controlled and protected network.
Because mobile devices are easily carried with a person, they are also easily lost or
stolen, which can allow personal information to fall into the hands of a criminal.
Connected medical devices present a unique security risk as they have been
compromised in past Wi-Fi cyberattacks to gain access to the larger network in a
hospital. The list goes on and on. In general, security requirements for connected
devices are always expanding, particularly as new vulnerabilities are discovered.

See Section 6 for more about cybersecurity.

 8.4.4. Interoperability
Connected devices offer some unique challenges for interoperability. Software is often
developed to work on multiple operating systems and a range of devices. For
example, a banking application may be intended for use on a wide range of smart
phones and tablets. The portability of an application to different devices, the ability of
an application to interoperate with other software and the compatibility of the software
across different browsers and operating systems are often lumped into the general
category of interoperability.

From a testing perspective, this gives a nearly infinite number of combinations to test
and those combinations continue to evolve rapidly. Using combinatorial testing
techniques can bring this potential set of test targets down to a manageable number.
This type of testing tends to be pushed to the end of the testing cycles, when there is
enough functionality to support the testing.

The architecture of the product often determines its interoperability capabilities. If the
architecture is limiting, the capability of the end product will also be limited.

 8.4.5. Accuracy
Accuracy testing targets the ability of the software to provide accurate results for a
given set of inputs. Users expect software to be accurate, but there are specific
considerations for connected device software primarily because the usage can be so
varied. A simple humidity detector developed on a Raspberry Pi may be intended for
use by plant enthusiasts to ensure proper watering levels. However, this same
detector could be used to ensure an asthmatic child has the proper humidity in their
room air. Because the use of a product may not be controllable, accuracy must be
ensured for any possible safety-critical usage. This tends to push most of the
connected device testing into the safety-critical arena, unless a product can be
specifically excluded from a safety-critical use.

Testing in a safety-critical environment requires higher levels of documentation and
due diligence to protect the developing organization from potential legal action if
something should go awry. This is an area that is open to debate, but from a testing

Testing Essentials, Version 2020 66

© Association for Testing and Software Quality Assurance

standpoint, more thorough and better documented testing will help mitigate
deployment risk and may help meet regulatory and industry standards. This is
particularly challenging in the short cycles of connected device products and is why
lightweight testing approaches are critical.

 8.4.6. Reliability
As with the higher expectations for usability and performance, users expect complete
reliability from their connected devices and software. No one expects to reboot their
smart phone and much less their refrigerator. Realistic or not, this is the expectation
that must be met in order to capture and retain users. Testing for reliability is difficult
and requires test environments that are representative and stable. It also requires
time, as reliability tests usually require applications to be observed under continual
use for a given length of time to determine the mean time between failure (MTBF).
The time required for this testing potentially conflicts with the goal of being quick to
market.

Reliability cannot be tested into an application – it must be built in. This means that
reliability targets must be set early and reviewed frequently. Reliability testing in the
connected device area tends to be limited to discovering whether there are significant
problems. More subtle problems or problems that only appear over long usage tend to
be discovered in production. Perhaps more than any other area, reliability assurance
is a development activity more than a testing activity.

 8.5. Lightweight Testing
A common theme has emerged in this section – software has to be built right because
there is no time to fix it later. This means the requirements for quality characteristics
must be defined and understood by the development and testing teams. In lightweight
testing models, such as Agile, the whole team approach helps everyone to review and
understand these requirements from the beginning and to revisit and validate
fulfillment of the requirements throughout development. Any lightweight methodology
is dependent on the engagement of the BAs, product owners, developers and testers
throughout the lifecycle to ensure that the product is reviewed and tested as it is being
built. Testing cannot be pushed to the end of the process if the schedule time is to be
reduced and quality criteria met.

Testing documentation must be as lightweight as possible in this environment. This
means that detailed test cases are probably not needed, but repeatable tests are.
Testing from decision tables and checklists rather than from step-by-step test cases is
a good way to test the implementation of business processes and workflows. The
testing techniques can be well-applied to reduce testing documentation while
increasing coverage and repeatability. Exploratory testing can help fill the gaps
between the testing techniques but should not be the only form of testing, as
repeatability tends to be compromised or lost. To adapt to this changing environment,
testers need to document the minimum needed for repeatability and to let risk and
coverage goals guide the testing.

Testing Essentials, Version 2020 67

© Association for Testing and Software Quality Assurance

Testing Essentials, Version 2020 68

© Association for Testing and Software Quality Assurance

 9. DevOps – 200 mins.
Keywords
behavior-driven development, build, commit, continuous delivery, continuous
deployment, continuous integration, continuous monitoring, continuous testing,
DevOps, DevOps toolchain, infrastructure as code, test-driven development

Learning Objectives for DevOps

9.1 Introduction
LO-9.1.a (K1) Recall the purpose of DevOps
LO-9.1.b (K1) Recall the benefits of DevOps

9.2 The DevOps Pipeline

LO-9.2.a (K2) Compare the differences between Continuous Integration,
Continuous Delivery and Continuous Deployment

LO-9.2.b (K2) Explain the concept of Continuous Testing
LO-9.2.c (K1) Recall the purpose of Continuous Monitoring
LO-9.2.d (K2) Describe the full DevOps pipeline

9.3 DevOps Testing
LO-9.3.a (K1) Recall the concept of testing during planning
LO-9.3.b (K2) Understand the difference between TDD and BDD
LO-9.3.c (K2) Understand how unit testing and integration testing are applied

in DevOps
LO-9.3.d (K2) Describe the types of testing that occur during staging and

deployment

9.4 The Role of Automation in DevOps Testing

LO-9.4.a (K2) Understand the relationship between continuous testing and
automation

LO-9.4.b (K2) Describe infrastructure as code
LO-9.4.c (K2) Explain the DevOps toolchain

 9.1. Introduction
DevOps bridges the gap between development and operations by bringing the two
teams together for the entire software lifecycle, from development to delivery. DevOps
is a cultural shift focused on building and operating at high velocity. It is an approach

Testing Essentials, Version 2020 69

© Association for Testing and Software Quality Assurance

that involves activities that are “continuous”: continuous development, continuous
integration, continuous testing, continuous deployment, continuous delivery, and
continuous monitoring.

Development roles in DevOps include everybody who is involved in making the
software and everyone who is involved in running and maintaining production.
DevOps asks people working in the development and operations teams to work
together, from the beginning of a software development project until it is delivered,
breaking down the walls that stand between the different departments.

The benefits of DevOps include:

• Assessing quality at every stage of development and operation, resulting in a
high-quality product with fewer defects

• Releasing small increments frequently – If a good DevOps pipeline is set up, it
helps to release the product more often, in small increments, which provides
early and frequent feedback

• On-time (and possibly lower cost of) delivery, in part due to a better delivery
process

• Reduction in vendor and third-party issues

• Faster time to market
There are some misconceptions about DevOps. For example, DevOps does not
eliminate any roles from development or operations. DevOps is not a separate team –
it is a culture shift. DevOps is not a tool, nor is it the use of fancy tools without a
defined process.

 9.2. The DevOps Pipeline

A DevOps pipeline is set up in every project to aid all the continuous activities.

Continuous Integration (CI): Continuous integration is the practice of merging all
developers’ working code into a main branch of the codebase in a shared repository
several times a day. The developers’ changes (commits) are validated by creating a
build and running automated tests against the build. Continuous integration ensures
that the application does not break whenever new commits are integrated into the
main branch of the codebase. If problems are introduced with the new code, they are
quickly identified and resolved.

Continuous Delivery: Continuous delivery builds on the CI process in which teams
produce software in short cycles, ensuring that software can be reliably released at
any time. In addition to having automated builds and tests, Continuous Delivery
requires an automated release process and a way to easily deploy applications at any
time.

Continuous Deployment (CD): Continuous Deployment (CD) takes the continuous
delivery process one step further. A change that passes all stages of the DevOps

Testing Essentials, Version 2020 70

© Association for Testing and Software Quality Assurance

pipeline is released to the customer. The deployment trigger is automatic; therefore,
the whole release process is automated.

Note that continuous integration (CI) is part of continuous delivery and continuous
deployment. Continuous deployment is continuous delivery when the releases happen
automatically.

Continuous Testing: Continuous testing is the repeated execution of tests against a
codebase. It is the quality gate throughout the DevOps pipeline and increases
confidence in the product. The success of continuous delivery or deployment relies on
continuous testing. At every stage of the DevOps pipeline, continuous testing ensures
that what is being delivered through a stage of the DevOps pipeline is correct and
good enough to progress to the next stage of the pipeline.

For continuous testing to succeed, the siloed testing and operations teams should be
integrated with the development team. Testing should not be a separate activity.
Instead, it should be incorporated as much as possible into the DevOps pipeline. For
example, performance and cybersecurity testing should not be an independent activity
but should be incorporated into the pipeline. The DevOps pipeline should not be
bypassed or blocked for a long time. Use of drivers and stubs are highly encouraged
for testing any “what-if” scenarios and dependencies.

Continuous Monitoring: Continuous monitoring allows the DevOps team to
constantly monitor the application in a production environment to ensure that the
application is performing at an optimal level and the environment is stable. Continuous
monitoring helps in diagnosing and fixing errors as soon as they are found.

Having described all the “continuous activities” in DevOps, the following is a simple
DevOps pipeline that incorporates all these activities. In its simplest form, a DevOps
pipeline can have the following stages:

Plan ! Code ! Build ! Staging ! Deploy

The planning stage in DevOps is a pre-CI/CD stage where requirements are gathered,
tested, and polished. Once a set of well-tested requirements is agreed upon,
developers start coding those requirements. As they code, developers commit their
changes to a source control repository. Each developer’s source code must be
accompanied by successfully executed unit tests. The commits trigger a build. Once
all the code compiles properly and all unit tests pass, the build is considered
successful. If any tests fail, the build is unsuccessful and the commit will roll back to a
previous successful commit. This cycle repeats for the next commit.

This continuous integration process ensures that passing tests accompany every
piece of code written by the developers, providing testing and code coverage at the
unit level. The tested and verified build then moves to a staging environment that
mimics the production environment. This is where integration tests, as well as other
necessary tests, such as functional, non-functional, performance, security, user
acceptance and exploratory tests are executed.

Testing Essentials, Version 2020 71

© Association for Testing and Software Quality Assurance

Once the application is thoroughly tested in the staging environment, it is ready to be
deployed. Depending on the DevOps pipeline, it can be deployed to a pre-production
environment, where the operations team may run more tests, or it can be deployed to
the customers.

 9.3. DevOps Testing

The way to approach testing in DevOps is to break down the pipeline into a few parts
and apply different types of testing in each part. A few of those testing types are
described here (this is not a comprehensive list). The simple DevOps pipeline shown
above is used as a guide.

Testing during planning: This is pre-CI/CD testing. Testing during the planning
stage means gathering requirements accurately and making sure they are testable by
creating proper acceptance criteria. Static testing techniques, such as reviews and
static analysis, should be used to ensure that defects from work products (especially
requirements) are eliminated as much as possible.

Testing during coding and building: During this stage of the pipeline, unit and
integration tests are written and executed.

Unit tests are developers’ tests where developers are responsible for making sure that
each unit being built has one or more unit tests associated with it. These tests are
automated and are an essential foundation for all other tests. They are simple tests,
easy to write, and fast to execute, but cover all significant paths through the code.

A common way to approach writing unit tests that ensure the testability of the code is
to write the unit test first, then write the code to make the test pass, and finally doing
some refactoring around that. This process is called Test-Driven Development (TDD).
TDD ensures coverage around the code that is being written at the unit level. This
supports continuous integration because as the developers commit their code and
their unit tests, the CI system will flag any failures or missing tests. The pipeline will
stop at this point until the tests pass, ensuring that only tested code will proceed.

TDD works very well at the unit level, but the tests still carry the developer’s
perspective. There is a need to develop tests based on other stakeholders’
perspectives. Therefore, a better approach to testing during coding and building is to
use Behavior-Driven Development (BDD). BDD uses the underlying concept of TDD,
but instead of thinking about writing a failed test, BDD starts with writing a failed
feature test. It then follows the same process as TDD to write code to pass each step
of the feature test. This way, the feature is traced all the way up to a requirement.

During the coding and building stages of the DevOps pipeline, static analyzers may be
used for code reviews before committing the code as part of a build. Peer reviews

Testing Essentials, Version 2020 72

© Association for Testing and Software Quality Assurance

should also be used for reviewing the code to ensure good and consistent coding
practices within the team.

Once unit testing is done at this stage, integration testing should be carried out to
make sure all developer code is successfully integrated and an integration build is
created. The purpose of integration testing is to ensure that there are no issues with
combining the different developers’ units. The integration build should pass all unit
and integration tests.

Testing during staging: A critical factor to remember for testing during staging is that
the environment in which testing is to take place must match the production
environment. Once there is a stable build, the build can be tested in a staging
environment using functional testing (does the system do “what” it should) and non-
functional testing (“how well” does the system provide the functionality), such as
performance, usability and other types of testing including security.

Performance testing is conducted to identify bottlenecks and any performance
degradation within the system. It is done by putting demands on an application under
normal and peak load conditions. It measures attributes such as response times,
throughput rates, resource-utilization, and identifies the application’s breaking point.

One of the main reasons that performance testing is often neglected is because
performance tests can take a long time to run and can be resource intensive. DevOps
and its pipeline allow the execution of performance tests early. Some performance
tests can be run in parallel with unit and integration tests. As functional tests are
executed in a staging environment, performance tests for the whole system can be
run in parallel.

There is a type of DevOps called DevSecOps, where cybersecurity testing is no
longer considered as an afterthought but is an integral part of the DevOps pipeline.
Cybersecurity testing is specialized testing and, therefore, a partnership with security
experts is needed to perform such types of testing in the pipeline. In DevSecOps,
security tools are identified and integrated into the DevOps toolchain and the results
are made visible to the whole team.

Testing during deployment: At this stage of the DevOps pipeline, smoke tests for
the whole application are performed to ensure that the application runs correctly.
Every release also needs to pass acceptance tests on deployments conducted by the
operations team.

 9.4. The Role of Automation in DevOps Testing
Automation plays a significant role in DevOps and DevOps testing. The Agile
movement embraced automation of unit testing, acceptance testing and continuous
integration. DevOps ties these with automation of the deployment process, eliminating
the boundary between developer and operations automation. Continuous testing

Testing Essentials, Version 2020 73

© Association for Testing and Software Quality Assurance

would not be possible without automation; it would not be an efficient process if a
large number of test cases were run manually in the DevOps pipeline. Moreover,
testing is not the only place where automation is needed in DevOps.

Infrastructure as code: In DevOps, CI/CD requires the automatic deployment of
changes to the test and production environments, where these environments are
launched automatically as needed. CI/CD also requires an automated way to push the
latest build to these environments and, eventually, to the customer’s environment.
Infrastructure as code includes the process and technology needed to provision and
manage environments (physical and/or virtual) through scripts.

Treating infrastructure as code is a key element in DevOps. It benefits both the
development and the operations team. Infrastructure as code allows operations teams
to get involved in the development process from the beginning. Developers can gain a
better understanding of the supporting infrastructure because they can be involved in
specifying and understanding configurations for servers, networking, storage, and so
on.

The DevOps toolchain: The ultimate goal of DevOps is to streamline development
with operations. DevOps does not necessarily require tools to do so, and DevOps is
not defined by its tools. However, for most organizations, tools play an important role
in automating tasks and ensuring processes run as efficiently as possible.

A DevOps toolchain is a combination of tools that help in development, integration,
testing, deployment, delivery, and management throughout the SDLC in a DevOps
environment. The DevOps toolchain should include tools from different categories,
such as:

• Project planning and management tools

• Requirements engineering tools
• Configuration management and provisioning tools

• Source code scanning (for quality and security) tools

• Build automation and continuous integration tools

• Functional and non-functional testing tools

• Deployment tools

• Release orchestration tools

• Application and infrastructure monitoring and performance tools
It is critical to design a DevOps toolchain that is adaptable to accommodate both
changes in team preference, application architecture, quality processes and other
technology shifts. In order to maintain an effective DevOps pipeline, DevOps teams
should include the right choice of tools as part of their DevOps toolchain.

Testing Essentials, Version 2020 74

© Association for Testing and Software Quality Assurance

Testing Essentials, Version 2020 75

© Association for Testing and Software Quality Assurance

 10. References
 10.1. ISO/IEC/IEEE Standards

• ISO/IEC/IEEE 12207:2017

• ISO/IEC/IEEE 15288

 10.2. Trademarks
The following registered trademarks and service marks are used in this document:

• AT*SQA® is a registered trademark of the Association for Testing and
Software Quality Assurance

 10.3. Books
[Anderson00]: Anderson, L.W. and Krathwohl, D.R. (2000) A Taxonomy for Learning,

Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational
Objectives, Allyn & Bacon: Boston MA, ISBN-10: 080131903X

[Firtman]: Maximiliano Firtman, “Programming the Mobile Web”, O'Reilly Media;
Second Edition (April 8, 2013), ISBN-10: 1449334970

[PMBOK] Project Management Institute, “A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Sixth Edition, 2017, ISBN-10: 9781628251845

 10.4. Other References

The following references point to information available on the Internet. Even though
these references were checked at the time of publication of this syllabus, AT*SQA
cannot be held responsible if the references are not available anymore. AT*SQA is
not endorsing any of these sites or their products. The references are provided as a
source of information only.

https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-money-just-disappeared/

https://www.reuters.com/article/us-facebook-settlement/facebook-settles-lawsuit-over-

2012-ipo-for-35-million-idUSKCN1GA2JR

[NASDAQ] https://www.sec.gov/news/press-release/2013-2013-95htm

Testing Essentials, Version 2020 76

© Association for Testing and Software Quality Assurance

National Institute of Standards and Technology. Framework for Improving Critical
Infrastructure Cybersecurity. Version 1.1. 2018.
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

National Institute of Standards and Technology. Risk Management Framework for

Information Systems and Organizations: A System Life Cycle Approach for
Security and Privacy. Revision 2. 2018.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

[WCAG] https://www.w3.org/WAI/policies/

