
Agile Implementation Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Agile Implementation Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Agile Implementation Testing
6 Introduction
8 Establishing the Team
11 Defining the Process
16 Planning
22 Defining the Requirements
25 Testing
31 Terms Used

References
35 Works Cited
35 Purpose of Document
36 Aknowledgments

Agile Implementation Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information

KEYWORDS

acceptance criteria, behavior-driven development (BDD),
burndown chart, epic, feature, feature flags, hardening sprint,
hub-and-spoke, integration testing, Kanban board, planning

poker, product backlog, production implementation verification
(PIV), product owner, release, requirements traceability matrix
(RTM), retrospective, scrum, scrum master, scrum of scrums,

sprint backlog, stand up, story grooming, story points, system
integration testing (SIT), system testing, task board, technical

debt, test-driven development (TDD), unit testing, user
acceptance testing (UAT), user story, velocity

Agile Implementation Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR API TESTING
Establishing the Team
(K2) Explain the common roles in a Scrum team
(K2) Explain a hub-and-spoke management structure

Defining the Process
(K2) Summarize the relationship between features, epics and user stories
(K2) Explain the purpose of the daily Stand Up meeting
(K2) Explain the usage of the Task Board
(K2) Explain the purpose and usage of the Definition of Ready
(K2) Explain the purpose and usage of the Definition of Done
(K2) Summarize the testing issues that can be caused by the use of feature flags

Planning
(K2) Explain the best usage of Test Plans and Test Strategies in Agile projects
(K2) Summarize the usual contents of a Release-level Test Plan
(K2) Summarize the content of the Product Backlog
(K2) Explain the usage and purpose of Story Points
(K2) Explain what occurs during Story Grooming
(K2) Explain how Acceptance Criteria are used during testing
(K2) Explain how the Product Backlog and Sprint Backlog are used

Agile Implementation Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Defining the Requirements
(K2) Explain the relationship between a feature, an epic, and a story
(K2) Explain the usage of the given/when/then format for defining a story
(K2) Summarize the areas that should be covered by the Acceptance Criteria
(K2) Summarize the methods used to evaluate stories

Testing
(K2) Explain why automation is needed in Agile projects
(K2) Summarize how the test levels apply in Agile projects
(K2) Explain how the Requirements Traceability Matrix should be managed in an Agile project
(K2) Explain factors that influence the level of detail in test documentation
(K2) Explain the usage of a Burndown chart
(K2) Provide examples of technical debt

Agile Implementation Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Introduction

The Information Technology (IT) world changes almost continuously as new technologies,
methodologies, and techniques are created. Some of these are adopted as-is, some are
discarded, and others are adapted for various uses. The Agile lifecycle methodology has
been widely embraced in principal, but in practice the methodology tends to be modified.
In some cases, this modification makes sense to adapt the methodology properly to fit
a particular situation, but in other cases the concept of “Agile” remains only in its name,
not in the practice. Because Agile is a pervasive methodology in its various forms, it is
important for all software testers to be familiar with it - in the base concepts, the pure
form, and the various modifications.

For the sake of readability, the term “software tester” will be used to refer to anyone who
is testing software, regardless of their formal role. In an Agile environment, each team

Agile Implementation Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

member is responsible for contributing to the quality of the product, via the implementation
of and participation in quality practices. Software testing, in this environment, is an
assessment of the quality of the software that has been built.

This syllabus focuses the Agile methodology from the viewpoint of the software tester.
This includes looking at how an effective Agile team works, the basic rules of an Agile
methodology, and how a software tester fits into this environment. This syllabus is
intended for use by all members of an Agile team as well as anyone managing an Agile
project. This includes product owners, business analysts, developers, software testers,
project managers, scrum masters and anyone else who is involved with the development
and testing of a product in an Agile environment.

Agile Implementation Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Establishing the Team
Once an organization has determined that Agile is
the proper approach for a project, the Agile team
must be created. In Scrum this is usually called the
Scrum Team.

Agile Team Roles
The Scrum team usually consists of the following:

• Scrum Master (SM) - keeps the team focused
on implementing Scrum correctly, accountable
for the team being effective

o Coaches team members
o Helps team to focus on creating deliverables

that meet the Definition of Done
o Removes blockages and impediments
o Ensures all Scrum events take place and

stay on track

• Product Owner (PO) - accountable for
maximizing the value of the delivered product
for the users

o Develops and communicates product goal
o Creates product backlog items
o Prioritizes the backlog
o Represents the needs of the stakeholders

• Developers - create the increments of software
for each Sprint

o Create a plan for the Sprint
o Ensure quality in accordance with the

Definition of Done
o Adapt as needed
o Hold each other accountable

Notice that testers do not have a defined role
in Scrum, rather that they are included in the
Developers due to the shared nature of quality.

Agile Implementation Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

In reality, the testing role does usually exist as a
role separate from a pure developer role. Both
of these roles constitute the majority of the
team. Also notice that the team definition does
not include Business Analysts (BAs), with the
assumption that the PO will take over that role or
the BA’s will work with the PO outside the confines
of the Scrum team.

Scrum Team Management
Team and project management in Scrum can be
difficult to implement. One of the primary tenets
of Agile is that the team should be self-managed,
but in reality this is usually not totally possible.
Business is usually hierarchically structured and
while a team may work on its own, its deliverables
are still the responsibility of some form of
management.

Project management in Scrum often exists outside
the team, but within the project structure. A
project manager (PM) may be responsible for
the outputs from multiple scrum teams and may
have a role in coordinating the work between the

teams, attending and participating in the “scrum
of scrums” which is a collection of all the scrum
teams, to coordinate efforts.

Project managers are normally responsible for
the budget and schedule for a project. This often
imposes a difficulty with “true” Agile where change
is “welcomed” and scope is fluid. Late changes
to requirements are often costly both in terms of
time and budget and controlling these changes
sometimes falls to the PM. This can put the PM
- who is concentrating on schedule and budget -
at odds with the PO who is working to fulfill the
needs of the user.

People managers are also not included in the
Scrum team. The concept of a Development or
Test Manager doesn’t exist in Scrum. Instead,
everyone is a responsible, self-managing
individual. While this construct may work on a
day-to-day basis within the team, there is still
a hierarchical reporting structure for the team
members, meaning that they have a “manager”
who helps to guide their career, controls merit
and promotion increases, and has a long-term

Agile Implementation Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

relationship with the individual. Scrum teams
are formed and dissolved as projects come and
go. The manager / employee relationship persists
across projects.

In both development and testing, the concept of
a central organization (e.g. center of excellence,
community of practice, chapter) with a traditional
management structure to which individuals
administratively report is often used. In this model,
sometimes called hub-and-spoke, the central
organization provides administrative support
for the individuals including training, career
development, promotions, hiring / firing, salary
increases, etc. The individuals are then “loaned”
to a project to create a Scrum team. In this way,
the individual still has organizational support for
their career but can work independently in a self-
managed way within the Scrum team.

While this is conceptually clear, in practice it
can be difficult to understand where the self-
management begins and ends. More mature,
capable individuals will thrive well with a relatively
hands-off management approach, where those
with less maturity or experience may require more
support from the central organization and their
peers.

To avoid problems occurring during development
and planning, it is important to clarify the
traditional roles and ensure there is a working
relationship and good communication between the
individuals in these roles.

Agile Implementation Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Defining the Process
The level of adherence to the Agile processes,
particularly the Scrum processes, will vary by
team. This section discusses the most commonly
used practices in industry.

Product Backlog
A User Story is a short definition of a small,
deliverable, piece of meaningful functionality.
Stories are usually written in the format of “As a...
I want to... So I can...”. This is easier to understand
with an example. Example: the team is building a
mobile application that will get data from a sensor
on a dog’s collar to provide the owner with status
information on the dog. One User Story could be:

 As a Dog Owner
 I want to check my dog’s temperature
 So I can decide if I need to turn up the air
conditioning

Once defined, a User Story is added to the Product
Backlog, which is a collection of Stories and tasks
that form the workload for the team. Tasks in the
backlog might include defects that need to be fixed
or maintenance work that needs to be done such
as refactoring a piece of code. Primarily though,
the backlog is composed of User Stories.

A feature is an overarching set of functionality
that will be decomposed into Epics. Epics are
then further decomposed into User Stories. In the
above example, a Feature for this product might be
“Determine my dog’s overall health”. This would
be based on taking multiple sensor inputs, plotting
them over time, creating a health profile and
comparing that to a norm found in some reliable
source. Each of these components could be
defined as an Epic. Each of these Epics describes
a considerable amount of work and requires
multiple stories and potentially work from multiple
teams.

Agile Implementation Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Projects tend to start by defining Features wanted
by the users. These are decomposed into the Epics
which are then decomposed into individual Stories.
Stories are then further refined by Grooming
sessions in which the team discusses additional
information needed to implement the Story and
test the result. Epics are also stored in the backlog
and may create a hierarchy where an Epic has
sub-tasks which are the User Stories that will
implement the Epic.

The Backlog is the basis for the “requirements” for
an Agile project. All work that is to be done must
be entered in the backlog. This includes additional
work that is discovered as the project progresses,
including technical debt as well as changes from
the users.

Stand Ups (also called Daily
Scrums)
Scrum teams must communicate openly and
consistently. To help facilitate this, daily Stand Ups
are conducted. These are designed to be short

meetings, generally 15 minutes, where the entire
team stands to provide individual status. Each
person is expected to report:

• Tasks completed yesterday
• Tasks planned for today
• Any blocking or problem issues

These meetings are usually held in the morning
at a standard time and each person on the team
is expected to attend and participate. The Scrum
Master is usually the moderator of the meeting,
ensuring everyone has a chance to talk and taking
any extended discussions offline. The goal of the
meeting is to ensure everyone is able to progress
toward the Sprint goal and has a plan for forward
progress.

Stand Ups are a powerful way to keep the team
focused and working together, but should not
replace on-going communication within the team.
Open chat channels, instant messaging tools,
conversations, emails, etc. are all methods to help
keep up the open communication. If the team is
not co-located, having effective tools becomes
more important and ensuring everyone is available
via those tools becomes imperative.

Agile Implementation Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Task Board
An Agile Task Board or a form of a Kanban Board,
is commonly used for the team to track progress
of the individual stories being worked within a
Sprint. Tools are available that can provide a
workflow-based digital task board. Task boards
can be physically created using a white board and
sticky notes representing the stories. Task boards,
like Kanban boards, can have columns defined as
needed by the team.

In its most simple form, a task board has three
columns - To Do, In Progress, Done. Cards
are moved through the columns as the task
represented by the card is completed. In a more
complex form there are columns for the stages
of the workflow, such as Analysis, Design,
Development, Testing, and Deployment. For any
one column, the To Do work is in the previous step
of the workflow and the Done work is now in the
next column of the workflow. Cards in a particular
column represent the work that is currently in
progress for that column.

Task Boards are often reviewed during team
Stand Up meetings to ensure that all cards are
in the correct columns and nothing has been
languishing for too long in one column. The Task
Board provides an easy way to see what is in
progress, what hasn’t been started, and what is
completed. It’s also very easy to see where there
are bottlenecks, or potential bottlenecks, in the
process.

Definition of Ready (DoR)
and Definition of Done (DoD)
Movement of work through the workflow is
governed by the DoR and DoD.

Definition of Ready (DoR) is a set of rules that
are applied to assess when a task has achieved
readiness to start a new step of the workflow.
The DoR varies depending on the step. For
example, for a Story to move from the Backlog
into Analysis, it must have completed grooming,
the effort must be estimated and agreed by the
team, the acceptance criteria (i.e. how to know if it
has been implemented correctly and completely)

Agile Implementation Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

must be defined and the team must agree to an
understanding of the functionality. Ideally, this
information is documented as part of the Story
to help alleviate later questions. The DoR for a
Story to move from Development to Testing may
include testing notes, test data, test environment
readiness, stubs/drivers available, etc.

There is not a standard set of DoR rules -
each team and project has its own needs and
requirements. It’s not unusual for a team to alter
the DoR rules as a project progresses and issues
are discovered in the process.

The Definition of Done is similar to the DoR,
but it is used to determine that all the tasks for
a particular stage in the workflow have been
completed. For example, the DoD from the
development stage may include completed unit
testing (usually determined by reaching a coverage
goal), completed code reviews, code check-in,
successful build and integration, implementation of
the unit tests into the automated testing flow, etc.

The DoR and DoD can be considered to be
quality gates ensuring that all necessary tasks
are completed before the story moves to the next

step in the process. In some contexts, the DoR
may be equated to Entry Criteria and the DoD
may be equated to Exit Criteria. Strict application
of these rules helps to reduce technical debt and
encourages the quality ownership across the team.

Some teams will use only one DoR which is used to
determine if a story is ready to development, and
one DoD which is used to determine if the story is
ready for deployment. This less rigorous approach
to quality gates may work for an accomplished
team with good internal quality practices, but may
be insufficient for teams needing more quality
checks during the process.

Workflow
In an Agile project, the flow the work is usually as
follows:

1. The project is defined
2. Features are identified
3. Features are converted to Epics
4. Epics are decomposed into Stories
5. Stories are selected for work in an Iteration
6. Completed Iterations are formed into Releases
7. Software is released to the users

Agile Implementation Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

In a CI/CD model, continuous integration and
continuous delivery are in play where software
is released through the pipeline in a continuous
manner potentially all the way to production. In
the case of feature implementation though, all
the Stories required to implement a feature are
gathered together into a Release. The software
may flow to production as the stories are
completed, but this completed code is usually held
behind a “Feature Flag” that is turned on when
all the software for the feature is completed and
tested. Only at that time is the new software
actually visible in production, although it has
been in the environment for a period of time - just
hidden behind the Feature Flag.

The use of Feature Flags complicates testing.
Because flags can be on or off in production,
and there may be more than one flag in use, all
combinations of on and off must either be tested,
or certain combinations must be prevented from
occurring in production. Once a feature flag has
been on for a period of time in production (usually
a month), it must then be removed from the code
so it can no longer be turned off, potentially by
accident. This helps to remove some of the testing
burden.

Agile Implementation Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Planning
Planning for an Agile project has the normal
project planning requirements as well as specific
Sprint and Release planning functions.

Project Planning
While Agile projects can be run without the
assistance of tools, this necessitates a co-located
team and an “everyone present all the time”
model. This is rarely reality, so tools should be
considered as a necessity in an Agile project. Agile
management tools help with storing the Backlog,
providing a Task Board, supporting a workflow
model, tracking metrics, and providing dashboards
and reporting. Because project management is
likely to be needed unless the project is quite small,
normal project reporting is likely needed. While
Agile promotes minimizing documentation and
providing working code instead, it is unusual to
find a management team that is happy to wait to
see working software rather than being able to
monitor progress.

Tool selection is highly influenced by the needs
of the team for storing, accessing and reporting
information. It is important to accurately assess
those needs prior to selecting a tool. While most
tools do support export/import to/from .csv files,
these sometimes do not provide a readable format
that is easily imported into another tool.

When a task management tool is selected, it is
important that the team understands the usage
guidelines. This will improve the accuracy and
reportability of the data. Using tags to identify
stories that will be reported together is a way
to work with the tool to increase its reporting
capabilities. As most of these tools are essentially
task management tools, they tend to be weak
in providing good trend reporting unless that
information is built into the tracked information.
Standard team agreements such as priority,
severity, risk and other ratings must be agreed and
documented.

It may be necessary for tools to integrate together.
For example, an existing source code management
tool may need to be merged with the task
management tool so that code releases can be
reflected in the task management tool. Some of

Agile Implementation Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

these integrations can be tricky and may require
development work. It’s important to identify
any integration requirements and ensure the
integrations can be created as needed. Relying
on manual replication of information is time
consuming and error prone.

While this section is focusing on Scrum, there are
other methodologies and approaches that may
be employed within a project. In a big project, it is
likely there will be multiple methodologies in use
with some teams working with Agile while others
are using Waterfall. This can work, but it requires
planning to ensure that the terminology across the
methodologies is understood, such as Definition
of Done, and that the resultant project releases
will be able to integrate and provide the necessary
functionality to the user.

Test Strategies and Test Plans are not a part of
the Agile methodology, but projects may still need
these. The Test Strategy is used to define the
overarching testing methodology, quality goals,
test approach, environments, tools, etc. for an
organization. The Test Plan is the application
of the Test Strategy for a particular project. A
Test Plan should not be at the Sprint level as

that information, such as which test cases
will be executed, is better tracked in the task
management tool. A Test Plan is an agreement on
the testing approach for a particular project. This
agreement is still needed, even in an Agile project.
These agreements feed into the DoR and DoD in
areas such as the amount of test automation to be
developed, the test environments, test data, etc.

Release Planning
While the concept of a release is not strictly within
the definition of Scrum, it is commonly used in
business to organize functionality into a “release”
that will meet the needs of the business users.
Releases are sometimes aligned to Epics in that
the release contains all of the Stories required
to complete an Epic. In organizations where
users require significant UAT time and training,
continuous delivery/deployment to production may
not be feasible. In this case, organizing stories into
Releases may make sense - allowing a single UAT
for a set of features and a single set of training and
deployment.

When planning a Release, or even assembling a
set of Sprints, there is sometimes a planning sprint,

Agile Implementation Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

called Sprint 0. While this is not a Scrum concept,
it is commonly used in practice to create the core
upon which the Sprints will build, to create the test
and development plans, to organize and prioritize
the Stories, and to define the goal of the Release.

From the testing standpoint, with or without a
Sprint 0, the test team still needs to conduct the
release-level test planning which may result in a
release-level test plan. This test plan will include
such information as:

• Test techniques to be employed (exploratory,
decision table, etc.)

• Test environments (including definition of the
required integrations)

• Test data (how it will be created, who will own
it, anonymization)

• Test schedule
• Test responsibilities and assignments (unit

testing, automation development, etc.)

Regarding the test schedule, there are a number
of different approaches to testing in an Agile
project. While Scrum defines that each Sprints
ends with a deliverable that is useful to the users,
that is sometimes not practical. For example, the

code developed in a Sprint might need to be tested
with code from previous Sprints, or may require
particular environments or data, or may require
extensive regression testing. In this case, there
may not be enough time to conduct the testing
within the timeframe of the Sprint, particularly if
the Sprint is short. In this case, testing sometimes
starts in the Sprint where the code is created, but
continues into the next Sprint. This allows more
time for adequate testing, but does require that the
testers either work across multiple Sprints at the
same time, or the testers divide into groups so that
while one group is testing the software from the
previous Sprint, the other group is interacting in
the planning and activities for the current Sprint.

This is a problem also seen with test automation.
Ideally, the test automation is developed during
the Sprint in which the code is developed, but the
stability of the code is rarely achieved early enough
to allow adequate time for the development of the
test automation. Test automation usually lags at
least a Sprint behind the development of the code.
This makes test automation useful for regression
testing, but not of much value for functional
testing.

Agile Implementation Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

In Sprint 0, release planning, or even prior to that,
the Product Backlog is built. The backlog consists
of stories planned for that release as well as other
tasks such as defect fixing and refactoring. The
backlog is not static and tends to grow as the
project proceeds and more stories are discovered
and technical debt is incurred. Any work done in
a Sprint should be aligned directly with a Story
or Task in the Backlog. That means that every
defect report generates a Task. Every instance
where refactoring will be needed also generates a
Task. Additional Stories are added as the need is
discovered as the requirements are further defined.

Because the Backlog is continuously changing, the
prioritization of the Backlog must be addressed
frequently. This is usually done at the start of
each Sprint when the stories are selected for
implementation in that Sprint. The Product Owner
is responsible for prioritizing the Backlog - with
input from the rest of the team - to ensure the
product is progressing toward the final deliverable.

Sprint Planning
Sprint planning determines which stories and tasks
will be addressed during the Sprint. A Scrum team
has a Velocity, which is the number of story points
it can implement in a Sprint. Story Points are an
indication of the level of effort that will be required
to fully implement (and test) a Story. Story points
are normally based on the Fibonacci scale (1, 2, 3,
5, 8, 13...) where each number defines the level of
effort. This is not directly aligned to a timeframe
and is designed to allow the team to determine
which stories will “fit” into a Sprint.

Story points are arbitrarily assigned based on the
team’s understanding of the level of effort required
to implement the story. In general, anything at
13 or above should be broken down into smaller
stories because estimation becomes less accurate
as the level of effort increases. Good estimation
takes practice and a team will become more
accurate in their estimations as time progresses.
This allows the team to become more accurate in
setting their Velocity as they learn how much work
can be completed during a Sprint.

Agile Implementation Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

There are a number of ways in which Story
Points are estimated. One of the common ways
is to use Planning Poker in which every team
member reviews the Story and provides their
estimate of the Story Points. Each team member
reveals their point estimate at the same time
so as not be influenced by others. When there
are discrepancies, those are discussed and re-
estimation occurs until there is agreement. For
example, there could be a wide discrepancy in a
story which is simple for the developers (such as
changing the format of an address) but can be
time consuming to test because of all the places
in the application where it is used. Where the
developers may think this is a 2, the testers may
think this is an 8. More discussion then occurs
which might result in everyone agreeing it’s a 5.

Once the story points are assigned to the
candidates for the Sprint, the prioritization must
be considered. Priority is assigned by the Product
Owner but may be discussed with the larger team
to ensure that both technical risk and impact are
understood. For example, a PO may feel that
fixing a particular defect is not important for the
users, but it might be a critical technical risk for
the product (such as potential for data corruption).

This is one of the reasons that a proper discussion
of the prioritization occurs within the team. This is
considered part of the “grooming” exercise

Grooming is done so that the team understands
the story, its implications, uses, risk, and priority.
In addition to discussing the priority, this is often
when the Acceptance Criteria are fleshed out. The
Acceptance Criteria define what the code must
do to be considered acceptable to the users. The
combination of the description of the Story and the
Acceptance Criteria fully define the functionality
for the team. The priority of the Story determines
when it will be implemented. The risk indicates the
criticality of testing. The Story Points indicate the
level of effort to implement the story. All of this
information is added and finalized for the Story
during grooming.

Once a Story has been groomed, it is eligible to be
added to the Sprint backlog - which is the refined
list of Stories and Tasks to be implemented in the
Sprint being planned. Note that this is a much
smaller set of Stories than the Release Backlog
which will contain all the Stories and Tasks. Based
on the Team’s Velocity, the Stories are selected for
the Sprint based on how much effort is available

Agile Implementation Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

for that Sprint. For example, if the team’s Velocity
is 30, then the team could implement 10 three-
point stories, or six five-point stories, and so on.
Because of the limits on what will fit into a Sprint,
it’s important that the prioritization is correct to be
sure the most important Stories are groomed.

Determining the risk of a story, based on the
technical risk and potential impact to the user,
helps to determine the necessary depth and
breadth of testing. In general, the higher the risk,

the more thorough the testing. Low-risk stories
may be tested with just exploratory testing
whereas high-risk stories may require more
extensive testing, a wider set of test data, and
more testing techniques such as boundary value
analysis, decision tables, etc.

In general, a “Sprint Plan” is not a test plan - it’s
just a list of what is going to be implemented in
that Sprint. It’s important not to confuse the two
as they have quite different meanings, audiences
and purposes.

Agile Implementation Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Defining the Requirements
Features, Epics and Stories

Agile requirements are usually classified as
follows:

A Feature, which contains Epics, which contain
Stories.

A Feature is a high-level requirement that captures
a piece of functionality, such as the ability to
Buy Travel Insurance. This is then broken down
into Epics, such as Sign Up, Manage Insurance
Products, Medical Questionnaire, Purchase. These
are then broken down into Stories such as Create
New Product, Delete Existing Product, Modify
Product Price, Present Product List, Compute
Medical Score, Accept Credit Card, etc.

A Feature is normally defined in from the end user
perspective using common language. Epics and
Stories are usually defined in the given/when/
then format or the “As a ..., I want to... so I can ...”
language. Either way, the requirement is defined
from the end user perspective.

The given/when/then format is often used in
Behavior-Driven Development (BDD), where the
behavior of the software is described. This format
is sometimes called Specification by Example.
Some of the benefits of this approach include:

• Precise guidance to organize the discussion and
grooming

• Because they are written in natural language,
anyone can understand what is needed

• This format sets up the requirements for test
automation with tools such as Gherkin.

This is a conceptual approach and can be
awkward for people to use until they become
familiar with it. In some cases, this format is used
to define test cases because it allows a higher
level of specificity regarding who the user is, what
they are accomplishing and how they are getting it
done. This helps to define test data and is an easy
path to future automation efforts.

Agile Implementation Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

An example of the BDD syntax for the Travel
Insurance application is:

 Given that I am a new user
 When I click on Buy Travel Insurance
 Then I am asked to enter my personal

information

The other common format used to define Stories is
the As a... I want to.... So I can.... Using the same
example as above, this would be:

 As a new user
 I want to select my travel insurance
 So I can enter my details

In both of these cases, grooming will be needed
to define the particulars for implementation
and testing. For example, we don’t know what
personal information is, we don’t know what
kinds of travel insurance might be available, etc.
The looseness of the requirements is a both an
advantage and disadvantage. The PO is able
to change the details and to supply additional
information at story grooming, but the scope is
hard to define without knowing those details. This
makes the grooming sessions critical to accurate
estimations.

Acceptance Criteria

Regardless of the format, the most critical aspect
of a story for testing is the proper definition of the
acceptance criteria. The acceptance criteria define
what will constitute the proper implementation for
the story. For the above story, we might see the
following acceptance criteria:

1. Travel insurance options are: Comprehensive,
Travel Only, Medical Only

2. User details are: Name, Address, DOB, gender,
Travel From, Travel To, Dates of Travel

3. Medical questionnaire is covered in story xxx
4. When completing this information, the user is

taken to the “Check out” page

This still doesn’t provide a high level of detail,
but as testing commences, more information can
be added such as “what is the proper address
format?”

Agile Implementation Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

Acceptance criteria are critical in determining the
accuracy and correctness of the implementation
and testing. Acceptance criteria should cover the
following:

• Functional / non-functional requirements
(usability, performance, security, etc.)

• Use cases (what scenarios are applicable)
• Business rules (what business rules are applied,

such as rejection of certain age groups)
• External interfaces (to what will this software

connect, such as the medical questionnaire)
• Constraints (how is personal information

stored)
• Data (what is requested, how is it used, how is

it passed between applications)

Evaluation of a Story

One quick way to evaluate a user story is to apply
the INVEST approach [agilealliance.org/glossary/
invest]:

• “I” ndependent of all other stories
• “N” egotiable in that this is not a specific

contract for a feature
• “V” aluable to the user
• “E” stimatable by the team
• “S” mall enough to fit in an iteration
• “T” estable based on the information provided

Another evaluation method is called the 3Cs
[premieragile.com/3cs-of-user-story]. This model
was introduced by Ron Jeffries in 2001 for Extreme

Agile Implementation Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

Programming but is still commonly used in Agile
projects. The 3 Cs are:

• Card - The concept of a story card started
when index cards were used to record the story,
thus limiting the amount of detail that could be
put on the card. This has since been replaced
by tools that track the information, but the card
image is still prevalent.

• Conversation - The conversation is used to take
the story and convert it to a deliverable. This is
commonly referred to as grooming but includes
collaboration of the team, brainstorming and
exchanging ideas.

• Confirmation - This is the acceptance criteria
which define how to determine if the story has
been implemented correctly and completely.

While the requirements are generally in the Story
form, it is important to remember that there must
be agreement between the user (what they want),
the developer (what they will implement) and
the tester (how they will prove that it “works”).
Without this agreement, the implementation will
extend, the scope will creep, and the user may not
get what they want even after significant effort
has been expended.

Agile Implementation Micro-Credential Syllabus 26Copyright AT*SQA,
All Rights Reserved

Testing
Good testing is good testing, regardless of the
lifecycle, framework, methodology, or organization.
That said, there are some ways to modify testing
to make it fit better into the Agile lifecycle.

Test Planning
While Agile projects tend to have less
documentation, agreement within the team still
must be reached to ensure that the quality levels
are achieved. Because of the tighter timelines
in an Agile project, it is important that the level
of quality is high throughout the development
process. The testing levels are still needed but
may be compressed to all be performed within a
Sprint.

Unit testing is still the responsibility of the
developer who wrote the code. Some Agile
projects incorporate Test-Driven Development
(TDD), which is the process where the developer
writes the unit tests before writing the code. The
goal is to make the developer think about what

must be achieved and how it will be verified,
before writing the code. TDD is not commonly
used in industry primarily because it requires
extensive creation of the unit test framework
with drivers and stubs to execute the piece of
code being tested. While this leads to higher
quality code, if the tests are well-designed and
appropriate, it generally takes longer to write the
code.

Automation is a strong goal in Agile environments.
This is because of the short release cycles and the
need to regression test increasingly larger sets
of code as Sprints are completed. Automating
the unit tests is an important responsibility for
the developers - they need to be incorporating
their tests into a unit test framework that can
be executed with each build. This improves the
quality, catches regressions quickly, and improves
the test coverage.

Integration testing (testing of individual units
working together) is still needed. This is often
a split responsibility shared by testers and
developers and is ideally automated early in the
development cycles. Incorporating this low-level
integration testing into the release pipeline is a

Agile Implementation Micro-Credential Syllabus 27Copyright AT*SQA,
All Rights Reserved

necessary component of DevOps but is also useful
for any Agile project.

System testing is still commonly used in Agile
projects and is usually conducted manually by
testers on the code that is completed for each
Sprint. Automation for this level of testing is
usually restricted to automating the regression
tests that will be run on each Sprint rather
than automating the full functional testing.
Theoretically, because only good quality code
should be coming through the build and integration
process, functional testing should not have to be
re-run for each iteration. This, of course, is heavily
dependent on the quality of the code and the
extent of the regression tests. Any test that is run
repeatedly should be automated.

System Integration Testing (SIT) is normally
conducted at the Release level rather than the
Sprint level. This is because an individual Sprint
may not have code that integrates across systems
whereas the Release will likely contain APIs that
will facilitate communication across applications.
Ideally, this testing is conducted within the Sprints
that are introducing the cross-system code, but

Sprint testing may be conducted in environments
that don’t contain the necessary integration. SIT
testing must be planned at the Release level where
multiple teams may be contributing their Sprint
products into the overall release.

User Acceptance Testing (UAT) is frequently
confused in Agile projects. At the end of each
Sprint, there should be a demonstration of
functionality to the users. This tends to be quite an
isolated view of the software and doesn’t usually
show end-to-end transactions. True UAT has to
be conducted at the Release level where the full
functionality is available to the user so that they
can validate that they can use the software to
accomplish their objectives. Doing UAT at the
Sprint level provides valuable early feedback, but it
is not a substitute for full UAT at the Release level.

It is important to remember that defects can be
found at any level of testing. This means that
the earlier a defect is found, the more likely it can
be fixed within the Sprint. When defects are not
found until Release level testing, this can delay the
release or cause the defect fix to roll into the next
Release.

Agile Implementation Micro-Credential Syllabus 28Copyright AT*SQA,
All Rights Reserved

In some projects a “Hardening Sprint” is used to
provide time to complete the testing and to fix any
defects that are found late in the process. While
this is a great way to provide adequate time to
complete the testing, it should not be used for a
significant defect fixing effort (such as pushing
all defect fixing into this Sprint) because that will
introduce more instability into the system.

Test Documentation
In keeping with the tenets of Agile, working
software is favored over documentation, but some
documentation will always be needed.

The Requirements Traceability Matrix (RTM) is a
necessary matrix to show that testing has covered
the right areas to the right level. This can be
built into the test management tools by tagging
test cases to stories so that the execution of the
test cases shows coverage of the stories. This
assumes that the right coverage was achieved
when the test cases were created, of course. If a
particular story needs five test cases to cover the
acceptance criteria adequately and only four are
executed, then only 80% coverage is achieved.
If five are needed and only one is created and

executed, the tool will show 100% coverage, but
that’s not an accurate measurement of coverage.

Test cases should contain only the minimum
amount of information necessary to be repeatable.
Exploratory tests with associated objectives (or
charters) can be considered to be test cases
that are executed against a story. There is no
requirement in Agile for test cases to contain
detailed steps unless the software itself is of a
nature that requires that level of documentation
(such as safety-critical software). The goal in
Agile is to keep test documentation to the level
required - no more. If functional tests will not be
re-used, then less detail is needed and a title may
be sufficient. If the tests will be used to develop
automation, more detail may be needed. The
testers need to define the level of detail expected
and set those standards during Release planning.

Even though the term “test case” is used here, that
does not mean a detailed script. It is an entity
used to guide the tester. This could be a mind map
that has resulted from a brainstorming session,
a goal defined for an exploratory testing session,
or a checklist based off the acceptance criteria.
There is rarely time in an Agile project to define

Agile Implementation Micro-Credential Syllabus 29Copyright AT*SQA,
All Rights Reserved

detailed tests and, given that the requirements
may change during development, the more detail
that is defined, the higher the maintenance effort
for those tests. Practicality needs to reign: the
tester should define only to the level needed
for the purpose of the test, and no further. Test
cases have to be designed for flexibility and the
inevitable change that goes with Agile projects.

While most Agile management tools are task
trackers, many have a test management
component as well. There are two commonly used
plug-ins for Jira, Zephyr and X-Ray, which both
provide test management capability and allow
tests and defects to be linked back to stories.
When selecting a test management tool, it’s best
to ensure it will integrate with the Story definition
tool for ease of use, traceability, and consistent
and readable reporting.

Deliverables
While one of the goals is to minimize
documentation, there are still deliverables required
in Agile projects. The primary deliverable is
working software and that should always be the
primary goal for the team.

To help support the working software and for the
team to tune its working practices, it is good to
track metrics that can be used to compare releases
and to feed into the retrospectives for areas of
achievement as well as areas of improvement. It is
important that this information be readily available
to the team while the release is in progress so that
adjustments can be made at the end of each Sprint
as needed.

Velocity is the number of story points that should
be implementable by the team. Burndown charts
are used to show the number of story points
estimated vs. the number of story points achieved.
This chart is usually tracked in real time and
updated when stories are marked as “Done”. Story
points are only collected at the point of “Done”,
which means that the points for a story that has
failed testing cannot be collected until the failure is
resolved. The burndown chart shows if the team
is on track to complete the estimated points and
allows the team to adjust its velocity to be more
realistic over time.

The number of stories implemented is also
sometimes tracked - as well as the number of

Agile Implementation Micro-Credential Syllabus 30Copyright AT*SQA,
All Rights Reserved

story points. This provides a way to see the
accomplishments in completing smaller stories
while larger ones are still in progress. Similarly,
tracking the size of the backlog is useful to see if
technical debt is accumulating. Ideally, the backlog
should be consistently reduced, but sometimes
completing a story generates more backlog items
in terms of required refactoring, defects, and other
technical debt. Remember technical debt is not
just in code, it could be time required to configure
test systems, create test data, etc. When the
backlog is rising instead of falling, it’s an indication
that the Sprint is experiencing unexpected issues.

Defect reports are still needed in Agile projects.
While it might be easy to just tell a developer
about a problem, that bypasses the concept of
the backlog and tracking all tasks to determine
velocity. It is important in an Agile project to
document all defects, trace them back to the
Story, and assign a priority. The developer can
then estimate the effort in Story points, and the
defect can be incorporated and prioritized into the
backlog.

Defect reporting in an Agile project is the same as
any other project, reporting trends, priority levels,
fix turnaround time, etc. It’s important that the
test management system be configured with the
proper defect fields so that reporting is easy and
automatable onto the dashboard.

Retrospectives are more of an activity than a
deliverable, but each retrospective should result
in a list of what the team does well as well as
what needs to be improved. The improvement list
should be a discussion item for the next planning
session to ensure the same mistakes are not made
and that continuous improvement is achieved.
Retrospectives are held to allow the team to
honestly assess what has been done and how well
it worked. These sessions are only valuable if the
output is subsequently used as input - otherwise
the session is a waste of time. Teams always have
areas for improvement. Part of working in an Agile
model is continuously improving.

Agile Implementation Micro-Credential Syllabus 31Copyright AT*SQA,
All Rights Reserved

Terms
Acceptance Criteria: The exit criteria that a component or system must satisfy in order to be accepted by a
user, customer, or other authorized entity.

Behavior-driven development (BDD): A collaborative approach to development in which the team is
focusing on delivering expected behavior of a component or system for the customer, which forms the basis
for testing.

Burndown chart: A chart showing the expected velocity compared to the actual velocity of a team across
Sprints.

Epic: A large form of a user story which forms the basis of a set of smaller, related user stories. An epic may
define a set of identifiable user functionality or an internal capability of the software needed to support user
functionality.

Feature: A capability that delivers value and fulfills a user’s need. A Feature is usually then further defined
by Epics which are further defined by Stories.

Feature flags: A software switch that controls whether the software associated with a particular feature is
enabled or disabled.

Hardening sprint: An increment of time concentrating on completing testing tasks and other quality
practices after the code for a Release has been completed.

Agile Implementation Micro-Credential Syllabus 32Copyright AT*SQA,
All Rights Reserved

Hub-and-spoke: The practice of setting up teams where there is a hub of capability that is loaned out to a
particular project or Agile team. For example, a Testing team may exist as an entity and individual testers
are loaned out to projects as needed.

Integration testing: Testing performed to expose defects in the interfaces and in the interactions between
integrated components or systems.

Kanban board: A tabular form used to visualize work and the workflow and to minimize work in progress.

Planning poker: A consensus-based estimation technique, mostly used to estimate effort or relative size of
user stories in Agile software development. It is a variation of the Wideband Delphi method using a deck of
cards with values representing the units in which the team estimates.

Product backlog: The list of prioritized functionalities which will form the basis of the product being
developed. This is sometimes referred to as the to-do list and may include tasks such as refactoring and
defect fixing as well as new development.

Production implementation verification (PIV): A test that is used to verify that the software is working
correctly in the production environment.

Product Owner (PO): The person who represents the future product users and interacts with the
development team by defining requirements (user stories), prioritizing stories/tasks, and answer questions
throughout the development process.

Release: A set of Sprints in an Agile project that provide fully implemented Epics and Features to the users.

Requirements Traceability Matrix (RTM): A tool used to track the relationship between the requirements
(stories) and the tests that verify the defined functionality.

Agile Implementation Micro-Credential Syllabus 33Copyright AT*SQA,
All Rights Reserved

Retrospective: A regular event in which team members discuss results, review their practices, and identify
ways to improve.

Scrum: An Agile development framework commonly used in industry.

Scrum Master: A person who facilitates an Agile team in implementing and applying Agile practices.

Scrum of scrums: A planning meeting that takes place across multiple scrum (Agile) teams.

Sprint backlog: The tasks and stories that have been selected for implementation within the Sprint.

Stand up: The short daily meeting of the Agile team to discuss what is in progress, what has been
completed and to work through any blocking issues.

Story grooming: The process by which a user story is further defined and prioritized by the team.

Story points: The amount of effort assigned to fully implement the given story, including all tasks such as
development and testing.

Systems integration testing (SIT): Testing the integration of systems and packages; testing interfaces to
external organizations (e.g., Electronic Data Interchange, Internet).

System testing: Testing an integrated system to verify that it meets specified requirements.

Task board: A visual means to track the progress of stories and tasks through the implementation process.

Technical debt: Work that has accumulated during a Sprint or Release which is required to improve the
quality and maintainability of the developed software.

Agile Implementation Micro-Credential Syllabus 34Copyright AT*SQA,
All Rights Reserved

Test-driven development (TDD): A way of developing software where the test cases are developed, and
often automated, before the software is developed to run those test cases.

Unit testing: Testing usually performed by a developer to ensure that the unit or component of code is
working as intended. This testing is often automated via the implementation of a unit testing framework.

User acceptance testing (UAT): Acceptance testing carried out by future users in a (simulated) operational
environment focusing on user requirements and needs.

User story: A high-level user or business requirement commonly used in Agile software development,
typically consisting of one sentence in everyday or business language capturing what functionality a user
needs and the reason behind this, any non-functional criteria, and also includes acceptance criteria.

Velocity: The expected number of story points that a specified team can complete within a Sprint.

Agile Implementation Micro-Credential Syllabus 35Copyright AT*SQA,
All Rights Reserved

References
Works Cited
Agile Alliance. (2023). What does INVEST Stand For? Retrieved from glossary:
https://www.agilealliance.org/glossary/invest
Premier Agile. (2023). 3 C’s of User Stories. Retrieved from 3 C’s of User Story:
https://premieragile.com/3cs-of-user-story/

Purpose of this Document

This syllabus forms the basis of the AT*SQA certification for Agile Software Testing Methodologies.
AT*SQA is an International Standards Organization (ISO) compliant certification body for software
testers. AT*SQA provides this syllabus as follows:

1. To training providers - to produce courseware and determine appropriate teaching methods.
2. To certification candidates - to prepare for the exam (as part of a training course or inde-

pendently).
3. To the international software and systems engineering community - to advance the profes-

sion of software and systems testing and as a basis for books and articles.

AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and ob-
tain prior written permission.

Agile Implementation Micro-Credential Syllabus 36Copyright AT*SQA,
All Rights Reserved

Acknowledgements

This document was produced by a core team from the AT*SQA Syllabus Working Group – Agile Syllabus:

Authors: Judy McKay

Reviewers:
Randy Rice
Earl Burba

The core team thanks the review team for their suggestions and input.

www.atsqa.org

