
DevOps Testing Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

DevOps Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
DevOps
5 Introduction
7 The DevOps Pipeline
10 DevOps Testing
13 The Role of Automation in DevOps Testing

References
16 ISO/IEC/IEEE Standards
16 Trademarks
16 Books
17 Other References

DevOps Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information
STUDY TIME – 200 MINS.

KEYWORDS

behavior-driven development, build, commit,
continuous delivery, continuous deployment,

continuous integration, continuous monitoring,
continuous testing, DevOps, DevOps toolchain,
infrastructure as code, test-driven development

DevOps Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR DEVOPS
Introduction
(K1) Recall the purpose of DevOps
(K1) Recall the benefits of DevOps

The DevOps Pipeline
(K2) Compare the differences between Continuous Integration,
 Continuous Delivery and Continuous Deployment
(K2) Explain the concept of Continuous Testing
(K1) Recall the purpose of Continuous Monitoring
(K2) Describe the full DevOps pipeline

DevOps Testing
(K1) Recall the concept of testing during planning
(K2) Understand the difference between TDD and BDD
(K2) Understand how unit testing and integration testing are applied in DevOps
(K2) Describe the types of testing that occur during staging and deployment

The Role of Automation in DevOps Testing
(K2) Understand the relationship between continuous testing and automation
(K2) Describe infrastructure as code
(K2) Explain the DevOps toolchain

DevOps Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Introduction
DevOps bridges the gap between development and operations by bringing
the two teams together for the entire software lifecycle, from development
to delivery. DevOps is a cultural shift focused on building and operating at
high velocity. It is an approach that involves activities that are “continuous”:
continuous development, continuous integration, continuous testing, continuous
deployment, continuous delivery, and continuous monitoring.

Development roles in DevOps include everybody who is involved in making
the software and everyone who is involved in running and maintaining
production. DevOps asks people working in the development and operations
teams to work together, from the beginning of a software development project
until it is delivered, breaking down the walls that stand between the different
departments.

DevOps Micro-Credential Syllabus

The benefits include:

Copyright AT*SQA,
All Rights Reserved

Assessing quality at every stage of development and operation, resulting
in a high-quality product with fewer defects

Releasing small increments frequently – If a good DevOps pipeline is set
up, it helps to release the product more often, in small increments, which

provides early and frequent feedback

On-time (and possibly lower cost of) delivery, in part due to a better
delivery process

Reduction in vendor and third-party issues

Faster time to market

There are some misconceptions about DevOps. For example, DevOps does not eliminate any roles from
development or operations. DevOps is not a separate team – it is a culture shift. DevOps is not a tool, nor is it
the use of fancy tools without a defined process.

DevOps Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

The DevOps Pipeline
A DevOps pipeline is set up in every project to
aid all the continuous activities.

Continuous Integration (CI): Continuous
integration is the practice of merging all
developers’ working code into a main branch
of the codebase in a shared repository several
times a day. The developers’ changes (commits)
are validated by creating a build and running
automated tests against the build. Continuous
integration ensures that the application does not
break whenever new commits are integrated into
the main branch of the codebase. If problems are
introduced with the new code, they are quickly
identified and resolved.

Continuous Delivery: Continuous delivery builds
on the CI process in which teams produce software
in short cycles, ensuring that software can be
reliably released at any time. In addition to having
automated builds and tests, Continuous Delivery

requires an automated release process and a way
to easily deploy applications at any time.

Continuous Deployment (CD): Continuous
Deployment (CD) takes the continuous delivery
process one step further. A change that passes all
stages of the DevOps pipeline is released to the
customer. The deployment trigger is automatic;
therefore, the whole release process is automated.

Note that continuous integration (CI) is part of
continuous delivery and continuous deployment.
Continuous deployment is continuous delivery when
the releases happen automatically.

Continuous Testing: Continuous testing is the
repeated execution of tests against a codebase.
It is the quality gate throughout the DevOps
pipeline and increases confidence in the product.
The success of continuous delivery or deployment
relies on continuous testing. At every stage of the
DevOps pipeline, continuous testing ensures that

DevOps Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

what is being delivered through a stage of the
DevOps pipeline is correct and good enough to
progress to the next stage of the pipeline.

For continuous testing to succeed, the siloed
testing and operations teams should be integrated
with the development team. Testing should
not be a separate activity. Instead, it should
be incorporated as much as possible into the
DevOps pipeline. For example, performance and
cybersecurity testing should not be an independent
activity but should be incorporated into the
pipeline. The DevOps pipeline should not be
bypassed or blocked for a long time. Use of drivers
and stubs are highly encouraged for testing any
“what-if” scenarios and dependencies.

Continuous Monitoring: Continuous monitoring
allows the DevOps team to constantly monitor the
application in a production environment to ensure
that the application is performing at an optimal
level and the environment is stable. Continuous
monitoring helps in diagnosing and fixing errors as
soon as they are found.

Having described all the “continuous
activities” in DevOps, the following is a
simple DevOps pipeline that incorporates all
these activities. In its simplest form, a DevOps
pipeline can have the following stages:

Plan > Code > Build > Staging > Deploy

The planning stage in DevOps is a pre-CI/CD stage
where requirements are gathered, tested, and
polished. Once a set of well-tested requirements
is agreed upon, developers start coding those
requirements. As they code, developers commit
their changes to a source control repository. Each
developer’s source code must be accompanied
by successfully executed unit tests. The commits
trigger a build. Once all the code compiles
properly and all unit tests pass, the build is
considered successful. If any tests fail, the build
is unsuccessful and the commit will roll back to a
previous successful commit. This cycle repeats for
the next commit.

DevOps Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

This continuous integration process ensures that
passing tests accompany every piece of code
written by the developers, providing testing and
code coverage at the unit level. The tested and
verified build then moves to a staging environment
that mimics the production environment. This
is where integration tests, as well as other
necessary tests, such as functional, non-functional,
performance, security, user acceptance and
exploratory tests are executed.

Once the application is thoroughly tested in the
staging environment, it is ready to be deployed.
Depending on the DevOps pipeline, it can be
deployed to a pre-production environment, where
the operations team may run more tests, or it can
be deployed to the customers.

DevOps Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

DevOps Testing

The way to approach testing in DevOps is to break
down the pipeline into a few parts and apply
different types of testing in each part. A few of
those testing types are described here (this is not
a comprehensive list). The simple DevOps pipeline
shown above is used as a guide.

Testing during planning: This is pre-CI/CD testing.
Testing during the planning stage means gathering
requirements accurately and making sure they
are testable by creating proper acceptance
criteria. Static testing techniques, such as reviews
and static analysis, should be used to ensure
that defects from work products (especially
requirements) are eliminated as much as possible.

Testing during coding and building: During this
stage of the pipeline, unit and integration tests are
written and executed.

Unit tests are developers’ tests where developers
are responsible for making sure that each unit
being built has one or more unit tests associated
with it. These tests are automated and are an
essential foundation for all other tests. They are
simple tests, easy to write, and fast to execute, but
cover all significant paths through the code.

A common way to approach writing unit tests that
ensure the testability of the code is to write the unit
test first, then write the code to make the test pass,
and finally doing some refactoring around that.
This process is called Test-Driven Development
(TDD). TDD ensures coverage around the code
that is being written at the unit level. This supports
continuous integration because as the developers
commit their code and their unit tests, the CI
system will flag any failures or missing tests. The
pipeline will stop at this point until the tests pass,
ensuring that only tested code will proceed.

DevOps Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

TDD works very well at the unit level, but the
tests still carry the developer’s perspective.
There is a need to develop tests based on other
stakeholders’ perspectives. Therefore, a better
approach to testing during coding and building is
to use Behavior-Driven Development (BDD). BDD
uses the underlying concept of TDD, but instead
of thinking about writing a failed test, BDD starts
with writing a failed feature test. It then follows the
same process as TDD to write code to pass each
step of the feature test. This way, the feature is
traced all the way up to a requirement.

During the coding and building stages of the
DevOps pipeline, static analyzers may be used for
code reviews before committing the code as part
of a build. Peer reviews should also be used for
reviewing the code to ensure good and consistent
coding practices within the team.

Once unit testing is done at this stage, integration
testing should be carried out to make sure all
developer code is successfully integrated and
an integration build is created. The purpose of
integration testing is to ensure that there are no

issues with combining the different developers’
units. The integration build should pass all unit and
integration tests.

Testing during staging: A critical factor to
remember for testing during staging is that the
environment in which testing is to take place must
match the production environment. Once there is
a stable build, the build can be tested in a staging
environment using functional testing (does the
system do “what” it should) and non- functional
testing (“how well” does the system provide the
functionality), such as performance, usability and
other types of testing including security.

Performance testing is conducted to identify
bottlenecks and any performance degradation
within the system. It is done by putting demands
on an application under normal and peak load
conditions. It measures attributes such as response
times, throughput rates, resource-utilization, and
identifies the application’s breaking point.

One of the main reasons that performance testing
is often neglected is because performance tests

DevOps Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

can take a long time to run and can be resource
intensive. DevOps and its pipeline allow the
execution of performance tests early. Some
performance tests can be run in parallel with
unit and integration tests. As functional tests are
executed in a staging environment, performance
tests for the whole system can be run in parallel.

There is a type of DevOps called DevSecOps,
where cybersecurity testing is no longer
considered as an afterthought but is an integral
part of the DevOps pipeline. Cybersecurity testing
is specialized testing and, therefore, a partnership

with security experts is needed to perform such
types of testing in the pipeline. In DevSecOps,
security tools are identified and integrated into the
DevOps toolchain and the results are made visible
to the whole team.

Testing during deployment: At this stage of the
DevOps pipeline, smoke tests for the whole
application are performed to ensure that the
application runs correctly. Every release also
needs to pass acceptance tests on deployments
conducted by the operations team.

DevOps Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

The Role of Automation in DevOps Testing
Automation plays a significant role in DevOps
and DevOps testing. The Agile movement
embraced automation of unit testing, acceptance
testing and continuous integration. DevOps ties
these with automation of the deployment process,
eliminating the boundary between developer and
operations automation. Continuous testing would
not be possible without automation; it would not
be an efficient process if a large number of test
cases were run manually in the DevOps pipeline.
Moreover, testing is not the only place where
automation is needed in DevOps.

Infrastructure as code: In DevOps, CI/CD requires
the automatic deployment of changes to the
test and production environments, where these
environments are launched automatically as
needed. CI/CD also requires an automated way
to push the latest build to these environments
and, eventually, to the customer’s environment.

Infrastructure as code includes the process and
technology needed to provision and manage
environments (physical and/or virtual) through
scripts.

Treating infrastructure as code is a key element
in DevOps. It benefits both the development
and the operations team. Infrastructure as
code allows operations teams to get involved
in the development process from the beginning.
Developers can gain a better understanding of
the supporting infrastructure because they can
be involved in specifying and understanding
configurations for servers, networking, storage,
and so on.

The DevOps toolchain: The ultimate goal of
DevOps is to streamline development with
operations. DevOps does not necessarily require
tools to do so, and DevOps is not defined by its

DevOps Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

tools. However, for most organizations, tools
play an important role in automating tasks and
ensuring processes run as efficiently as possible.

A DevOps toolchain is a combination of tools
that help in development, integration, testing,
deployment, delivery, and management
throughout the SDLC in a DevOps environment.

The DevOps toolchain should include tools from
different categories, such as:

• Project planning and management tools
• Requirements engineering tools
• Configuration management and provisioning

tools
• Source code scanning (for quality and security)

tools
• Build automation and continuous integration

tools
• Functional and non-functional testing tools
• Deployment tools
• Release orchestration tools
• Application and infrastructure monitoring and

performance tools

It is critical to design a DevOps toolchain that
is adaptable to accommodate both changes in
team preference, application architecture, quality
processes and other technology shifts. In order to
maintain an effective DevOps pipeline, DevOps
teams should include the right choice of tools as
part of their DevOps toolchain.

DevOps Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

References
ISO/IEC/IEEE Standards

• ISO/IEC/IEEE 12207:2017
• ISO/IEC/IEEE 15288

Trademarks
The following registered trademarks and service
marks are used in this document:

• AT*SQA® is a registered trademark of the
Association for Testing and Software Quality
Assurance

Books
[Anderson00]: Anderson, L.W. and Krathwohl, D.R.
(2000) A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives, Allyn & Bacon: Boston MA,
ISBN-10: 080131903X

[Firtman]: Maximiliano Firtman, “Programming the
Mobile Web”, O'Reilly Media;

Second Edition (April 8, 2013), ISBN-10:
1449334970

[PMBOK] Project Management Institute, “A Guide
to the Project Management Body of Knowledge
(PMBOK Guide) – Sixth Edition, 2017, ISBN-10:
9781628251845

DevOps Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Other References

The following references point to information available on the Internet. Even though these references were
checked at the time of publication of this syllabus, AT*SQA cannot be held responsible if the references are
not available anymore. AT*SQA is not endorsing any of these sites or their products. The references are
provided as a source of information only.

https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-money-just-disappeared/ https://www.reuters.
com/article/us-facebook-settlement/facebook-settles-lawsuit-over-

2012-ipo-for-35-million-idUSKCN1GA2JR

[NASDAQ] https://www.sec.gov/news/press-release/2013-2013-95htm

National Institute of Standards and Technology. Framework for Improving Critical Infrastructure
Cybersecurity. Version 1.1. 2018. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

National Institute of Standards and Technology. Risk Management Framework for Information Systems and
Organizations: A System Life Cycle Approach for Security and Privacy. Revision 2. 2018.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

[WCAG] https://www.w3.org/WAI/policies/

www.atsqa.org

