
ASTQB Certified

Mobile Tester

American Software Testing Qualifications Board

Copyright Notice
This document may be copied in its entirety, or extracts made, if the source is acknowledged.

American
Software Testing
Qualifications Board

Version 2015 Page 2 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Copyright © American Software Testing Qualifications Board (hereinafter ASTQB)

ASTQB Foundation Level Working Party – Mobile Syllabus: Judy McKay (chair), Randy Rice

American
Software Testing
Qualifications Board

Version 2015 Page 3 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Revision History

Version Date Remarks
Alpha 28 July 15 Alpha release for review
Beta 30 Aug 15 Incorporated Alpha release comments
GA 15 Sep 15 Incorporated Beta release comments

American
Software Testing
Qualifications Board

Version 2015 Page 4 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Table of Contents

Revision History .. 3	
Table of Contents .. 4	
Acknowledgements ... 6	
0. Introduction to this Syllabus .. 7	

0.1	 Purpose of this Document ... 7	
0.2	 Examinable Learning Objectives ... 7	

1	 Introduction to Mobile Testing - 75 mins ... 8	
1.1	 What is a Mobile Application .. 8	
1.2	 Expectations from Mobile Users .. 9	
1.3	 Challenges for Testers ... 9	

1.3.1	 Frequent Releases ... 9	
1.3.2	 Portability/Compatibility .. 9	

1.4	 Necessary Skills .. 10	
1.5	 Equipment Requirements .. 10	
1.6	 Lifecycle Models .. 11	

2	 Test Planning and Design – 60 mins. ... 12	
2.1	 Identify Functions and Attributes ... 12	
2.2	 Identify and Assess Risks .. 13	
2.3	 Determine Coverage Goals ... 14	
2.4	 Determine Test Approach .. 15	
2.5	 Identify Test Conditions and Set Scope ... 15	
2.6	 Regression Testing .. 16	

3	 Quality Characteristics for Mobile Testing - 290 mins ... 17	
3.1	 Introduction .. 17	
3.2	 Functional Testing ... 17	

3.2.1	 Introduction ... 17	
3.2.2	 Correctness .. 18	
3.2.3	 Security ... 18	
3.2.4	 Interoperability .. 19	
3.2.5	 Test Design .. 20	

3.3	 Non-Functional Testing .. 23	
3.3.1	 Performance Testing .. 23	
3.3.2	 Usability Testing ... 25	
3.3.3	 Portability Testing ... 26	
3.3.4	 Reliability Testing ... 27	

4	 Environments and Tools - 285 mins. ... 29	
4.1	 Tools .. 29	

4.1.1	 Application to Mobile .. 30	
4.1.2	 Generic Tools ... 30	
4.1.3	 Commercial or Open Source Tools .. 30	

4.2	 Environments and Protocols .. 31	
4.2.1	 Environment Considerations .. 31	
4.2.2	 Protocols ... 32	

4.3	 Specific Application-Based Environment Considerations .. 33	
4.3.1	 Browser-based Applications ... 33	
4.3.2	 Native Device Applications ... 33	
4.3.3	 Hybrid Applications ... 34	

4.4	 Real Devices, Simulators, Emulators and the Cloud ... 34	
4.4.1	 Real Devices .. 34	
4.4.2	 Simulators ... 34	

American
Software Testing
Qualifications Board

Version 2015 Page 5 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

4.4.3	 Emulators ... 35	
4.4.4	 Cloud .. 35	

4.5	 Performance Test Tools and Support .. 35	
4.6	 Test Automation ... 36	

4.6.1	 Tool Support ... 37	
4.6.2	 Skills Needed .. 37	

5	 Future-Proofing – 135 mins. .. 39	
5.1	 Expect Rapid Growth ... 39	
5.2	 Build for Change .. 39	

5.2.1	 Architect the Testing ... 40	
5.2.2	 Enable Efficient Maintenance ... 40	
5.2.3	 Select Tools for Flexibility ... 40	
5.2.4	 Select Partners Carefully .. 40	

5.3	 Plan for the Future ... 41	
5.3.1	 Lifecycle Models ... 41	
5.3.2	 Alternative Testing .. 41	

5.4	 Anticipating the Future ... 41	
6	 References .. 42	

6.1	 ISTQB Documents ... 42	
6.2	 Trademarks .. 42	
6.3	 Books ... 42	
6.4	 Other References .. 42	

American
Software Testing
Qualifications Board

Version 2015 Page 6 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Acknowledgements
This document was produced by a core team from the ASTQB Foundation Level Working Group –
Mobile Syllabus:

Judy McKay (chair), Randy Rice.

The core team thanks the review team for their suggestions and input.

The following persons participated in the reviewing, commenting and balloting of this syllabus:
Rex Black, Earl Burba, Jouni Jatyri, Pasi Kyllonen, Levente Nemeth, Andrew Pollner, Randy Rice,
Gary Rueda, Szilárd Széll

American
Software Testing
Qualifications Board

Version 2015 Page 7 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

0. Introduction to this Syllabus

0.1 Purpose of this Document
This syllabus forms the basis for the American Software Testing Qualification for the Mobile Tester.
The ASTQB® provides this syllabus as follows:

1. To ISTQB® Member Boards, to translate into their local language and to accredit training
providers. National Boards may adapt the syllabus to their particular language needs and
modify the references to adapt to their local publications.

2. To training providers, to produce courseware and determine appropriate teaching methods.
3. To certification candidates, to prepare for the exam (as part of a training course or

independently).
4. To the international software and systems engineering community, to advance the profession

of software and systems testing, and as a basis for books and articles.

The ASTQB® may allow other entities to use this syllabus for other purposes, provided they seek and
obtain prior written permission.

0.2 Examinable Learning Objectives
The Learning Objectives for each chapter are shown at the beginning of the chapter and are used to
create the examination for achieving the Mobile Tester Certification. The Learning Objectives support
the Business Outcomes.

American
Software Testing
Qualifications Board

Version 2015 Page 8 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

1 Introduction to Mobile Testing - 75 mins

Keywords
Internet of Things, hybrid application, mobile application testing, mobile web application, native mobile
application, wearables testing

Learning Objectives for Introduction to Mobile Testing

1.2 Expectations from Mobile Users
MOB-1.2.1 (K2) Explain the expectations for a mobile application user and how this affects test

prioritization

1.3 Challenges for Testers
MOB-1.3.1 (K2) Explain the challenges testers encounter in mobile application testing and how the

environments and skills must change to address those challenges
MOB-1.3.2 (K2) Summarize the different types of mobile applications

1.5 Equipment Requirements
MOB-1.5.1 (K2) Explain how equivalence partitioning can be used to select devices for testing

1.6 Lifecycle Models
MOB-1.6.1 (K2) Describe how some software development lifecycle models are more appropriate for

mobile applications

1.1 What is a Mobile Application
Mobile applications generally fall into two categories, those developed specifically to be native mobile
applications and those that were designed to be viewed through a web browser on a mobile device.
From the user’s viewpoint, there is no difference, although some browser-based applications may be
optimized for the mobile device providing a richer (or at least more readable) user experience. From
the developer’s and tester’s viewpoint, there are different challenges, goals and success criteria. This
syllabus is focused on the applications specifically developed for use by a mobile device although
there will be some discussion about applications that have become mobile despite the original
intentions.

Mobile devices include any of the so-called hand-held devices including (dumb) mobile phones, smart
phones and tablets/netbooks as well as devices that have been created for a specific use such as e-
readers or a device used by a parcel delivery service that allows the driver to record delivery, the
customer to sign and an image to be taken documenting the delivery. Mobile devices also extend to
wearable items such as smart watches and glasses that allow access to specific applications and may
include additional native functionality, such as telling time or improving vision. While some of the
mobile application testing concepts discussed in this syllabus are applicable to wearable devices,
wearable devices are not the focus of this syllabus.

The field of mobile devices is continually expanding as new uses are devised and devices are created
to support those uses.

American
Software Testing
Qualifications Board

Version 2015 Page 9 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

1.2 Expectations from Mobile Users
Mobile applications are becoming critical to daily living. Users expect 100% availability regardless of
what they do to the device or the software. They expect usability that allows them to download and
immediately use an application with no instructions or training. They expect exceptional response
time, regardless of what else the device is doing and regardless of the strength or capability of the
network.

Users have become impatient with slow software and have no tolerance for software that is difficult to
use. Usability and performance testing have become vital to the release of any mobile application
because of the expectations of the user, not necessarily because of the criticality of the functionality.
This is different from traditional software where users are somewhat committed to using an
application, even if it was a bit slow or awkward to use, particularly for enterprise software where the
employee has no choice but to use it. If a mobile application is too slow or not attractive, the user will
often have an option to download a different application. Organizations can lose customers if their
mobile applications are not fast enough or pleasing enough. Competition in the mobile application
industry is fierce, raising the importance of good testing and high quality products.

1.3 Challenges for Testers
Mobile users are everywhere and include everyone. Never before in the history of software has the
user community been so vast or varied. Mobile uses vary from recreational to business-critical. Users
expect seamless connectivity and instant access to information. The Internet of Things has put
access into the hands of many but has also increased the expectation for all applications and devices
to provide a consistent experience [InfoQ]. The Internet of Things includes many items that are not
particularly mobile, such as refrigerators, or handheld devices, such as drones. While the Internet of
Things is out of scope for this syllabus, it is important to remember that the experience people have
with these devices affects their expectations for their mobile devices.

The set of mobile devices is continually growing. Software is expected to work, and work well, across
a growing set of devices with constantly increasing capabilities, while providing an ever-expanding set
of functionality to the novice and expert user.

1.3.1 Frequent Releases
One of the biggest challenges to testing is the frequency of the release cycles. Because the mobile
market is so competitive, organizations race to be first-to-market with new features and capabilities. In
order to meet these demands, support for development environments and tools has increased
dramatically making the bar for entry into the market much lower than ever existed before. There are
free development kits, free or inexpensive training and free distribution channels. This leads to many,
many developers with the ability to quickly create and deploy an application. Testing has to adjust to
the demands of time-to-market while also meeting the expectations of the users regarding
functionality, usability and performance.

1.3.2 Portability/Compatibility
Although invisible to most users, there is an expectation that applications will work across devices and
that devices will work together. There is an expectation to be able to easily and automatically transfer
data between devices and to use the same applications from any device. The portability of an
application is highly dependent on how it was developed and the deployment target.

The typical application types include the following:

• Traditional browser-based applications – The application is designed to work in a browser on
a PC. It may or may not function well and provide adequate usability (e.g., scaling) when
accessed from a mobile device.

American
Software Testing
Qualifications Board

Version 2015 Page 10 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

• Mobile web sites – The application is hosted on the server but it is designed for mobile access
across multiple compatible devices. Portability is a key concern.

• Mobile web applications – The application is developed for use by a variety of devices with the
majority of the code residing on the web site. Mobile web applications must have
communication with the web server in order to run. In some cases, the applications are the
same as those used on the web site but generally a mobile version of the application is what is
used by the mobile device.

• Native mobile application – A native mobile application is designed for a specific device family.
These applications reside on the device and communicate directly with the device through the
device’s interfaces. Coding is normally done using tools designed specifically for the device.
Testing a native mobile application requires either the specific device or simulators for that
device and its software.

• Hybrid applications – Rather than being coded with the native device tools, these applications
use a library or framework to handle platform specific differences. Device functionality is
accessed via plug-ins that may be unique for different families of devices. Hybrid applications
are designed to be more portable than native mobile applications but are still able to access
unique device capabilities. Hybrid applications are often dependent on some level of
connectivity with a web server and may also be subject to device/browser compatibility issues.

It is important for a tester to understand the intended target device(s) in order to know the portability
requirements for testing.

1.4 Necessary Skills
Functional testing is required for mobile applications. The tester must have the skills necessary for
manual functional testing tasks including requirements analysis, test design, test implementation, test
execution, and results recording and reporting. These skills are covered in the ISTQB Foundation
Level syllabus [ISTQB_FL_SYL].

In addition to the standard testing skills that are needed in any environment, mobile application testing
also requires good capabilities for testing specific quality characteristics: security, usability,
performance, portability/compatibility, and reliability. There are also new testing techniques, in
addition to those covered in the ISTQB Foundation Level syllabus, that are applicable for mobile
testing.

These quality characteristics, skills and techniques are covered in Chapter 3.

1.5 Equipment Requirements
Depending on the expected usage of the application, testing needs to cover representative devices.
Representative devices are those whose behavior can be determined to be representative of other
devices in the same class. For example, it might be determined that all iOS devices will behave the
same way when running an application, therefore only one of those representative devices needs to
be tested. The results from the test on one device is the same as would be seen if the same tests
were run on another iOS device. This is equivalence partitioning applied at the device level.

Most devices will not fall into such large categories of similar behavior, so it is likely that a sample set
of devices will be needed to determine compatibility for an application across devices. This usually
results in having to acquire a large set of physical devices, use simulators, rent a lab full of devices or
use alternate testing approaches. These options are discussed in more depth in Chapter 4.

It is important for the tester to approach any mobile testing project with a clear understanding of the
equipment requirements. This is a key part in effective planning to determine the budget and

American
Software Testing
Qualifications Board

Version 2015 Page 11 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

schedule and also requires the proper allocation of test cases across the various devices. Factors
such as device location (rural, city), weather (sunny, rainy), usage location (indoors, outdoors),
connectivity (WiFi, cellular) and others are significant in selecting the testing approach, people and
locations.

1.6 Lifecycle Models
The requirements for fast development and deployment have pushed the software development
lifecycle toward the iterative models, including Agile. Rapid prototyping is often used to quickly
develop, gain feedback and successfully deploy a new product. Existing products are updated
frequently and there is a tendency in the market to “push it out and let the users test it”. This often
results in frantic fixes being deployed to unhappy users.

As testers, we need to employ testing that will not substantially slow the progress of the product to
market, but will help reduce the risk of a catastrophic failure. Risk-based testing approaches are
critically important in the mobile application industry because there will never be enough time to test
everything. The amount of risk and the matching amount of testing are correlated to the usage and
criticality of the product. Smart phones, for example, have a wide variety of uses, some of them
safety-critical. It is important to evaluate each application individually for its risk factors rather than to
group a set of applications together since even though the functionality may be similar, the actual
usage may determine the criticality. For example, if a viewing application should be able to display
images at a certain resolution, not achieving that resolution might not matter for someone’s holiday
pictures, but could be safety-critical if those images are used by a remote doctor to analyze skin
abnormalities to determine cancer treatment. Once a proper risk analysis has been conducted, the
testing can be allocated to mitigate the risk to achieve the desired level of confidence in the released
product.

Because many mobile applications are able to accept updates “over-the-air” (OTA), sending updates
may be relatively easy and fast and it may be possible to force installation of the updates. Other
mobile devices that have to be loaded from a central source (a PC for example) may not be as easy to
update quickly if a significant defect is found. The ability and ease with which updates can be applied
may be a factor in determine release risk. It is also a factor in determining how much effort will be
needed for maintenance testing.

Many products are developed incrementally. An initial, simple version of the application is developed
and deployed. Features are then added incrementally as they become ready and as the market
demands. This type of development allows the product to be introduced quickly without compromising
quality while additional features are developed internally with testing time allocated.

Sequential lifecycle models (e.g., V-model, waterfall) are used less frequently for mobile applications
due to the need to get a product to market quickly. Documentation tends to be minimal and testing
tends to follow more lightweight methods with less documentation. Safety-critical applications still tend
to follow sequential models as do other applications that are under regulatory control.

Testing approaches are discussed in Chapter 2.

American
Software Testing
Qualifications Board

Version 2015 Page 12 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

2 Test Planning and Design – 60 mins.

Keywords
minimal essential test strategy, operational profiles, risk analysis

Learning Objectives for Test Planning and Design

2.1 Identify Functions and Attributes
MOB-2.1.1 (K2) Explain why use cases are a good source of testing requirements for mobile

applications

2.2 Identify and Assess Risks
MOB-2.2.1 (K2) Describe different approaches to risk analysis

2.3 Determine Coverage Goals
MOB-2.3.1 (K2) Explain how coverage goals will influence the level and type of testing to be

conducted

2.5 Identify Test Conditions and Set Scope
MOB-2.5.1 (K2) Describe how test analysts should take the device and application into consideration

when creating test conditions

2.1 Identify Functions and Attributes
Feature rich mobile devices are difficult to test. It is important to focus on the functions and attributes
that are within scope for the testing effort. For example, if the goal is to release a new application
across multiple smart phones, the focus will be on the capabilities of the application, the interaction of
that application with the device and the quality characteristics that are important for the success of the
application (i.e., usability and performance). If the project is to release a new smart phone, the scope
is different. In this case the tester will focus on the capabilities of the phone itself, its ability to support
a sample of applications, communication between the device and the network (also WiFi and other
forms of communication such as IP-over-USB), and various other quality characteristics. The focus of
this syllabus is testing the mobile applications rather than the device itself.

Requirements tend to be brief. There may be a specification, a requirements document, use cases or
user stories. In general, the tester should not expect comprehensive requirements and should instead
plan to work at the use case level where usage scenarios are identified. If the use cases are not
available, the tester should seek them out to understand the expected usage and to focus the testing
accordingly.

In order to scope the testing, it is important for the tester to understand the attributes of the application
that are important to the user and prioritize them appropriately. If security and performance are more
important than usability, this will help to identify the risks and determine the amount and type of testing
that will be needed in each area. The stakeholders must understand that each attribute desired to be
tested will require an investment in people (with the appropriate skills), tools and environments.

American
Software Testing
Qualifications Board

Version 2015 Page 13 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

2.2 Identify and Assess Risks
A mobile application project that is not safety-critical or mission-critical is usually characterized as
being feature-rich but time-poor, meaning that there are many features, but little time for
implementation and testing. Requirements tend to be brief and informal. As a result, when identifying
and assessing risks, it is important to use a lightweight process. One way to approach the risk
analysis is to think of the application in two ways, the physical and the functional.

For the physical capabilities consider the items that are physically touched by the user (e.g., buttons,
icons, display, graphics) and physical features of the device that are used by the user (e.g., rotation,
accelerometer). These capabilities enable the functionality of the application but are not functions
themselves. Once these items are identified, create a grid that lists the category of the item (e.g.,
display) and list the capabilities that are of critical, high, medium, and low importance to the user. For
example, it might be critical that an image loads completely in normal situations, high importance that
the resolution is acceptable, medium importance that it loads consistently without retries, and low
importance that it retries the load if the connection is dropped. Similarly, it might be of critical
importance that an image rotates when the device is rotated, high importance that it resizes upon
rotation, and medium importance that the text rotates with the image.

For the functional capabilities consider the features of the software (e.g., accurate map loading for a
navigation application). In this case, it might be critically important that the correct map is loaded,
highly important that the map shows the car’s location, but only of medium importance that the map
shows fuel statements, and low importance that it shows construction sites.

This lighter-weight approach allows the tester to understand the physical aspects of the device that will
need to be tested, either on a real device or a simulator, as well as the features that are important to
the user. By working through a spreadsheet of this type, the tester can find requirements that might
not have been stated and can help discover features that are implemented but not documented.

Examples of lightweight approaches to risk analysis are available from multiple sources. Traditional
risk analysis approaches can also be used in a lighter-weight fashion to better fit mobile testing. See
[Paskal] for information regarding the Minimal Essential Test Strategy (METS), [Black09] for a
discussion of risk-based testing, and [vanVeenendahl12] for a discussion of the PRISMA® approach.

It is important for the tester to adapt the risk identification and assessment process to fit within the
timelines of the project. Heavyweight methods will not be successful in this environment and will tend
to delay the testing.

It may also be useful to consider production metrics when defining risk areas. For example, the
following metrics could be used [Webtrends]:

• Total downloads – Indicates the amount of interest in the application and provides the upper
bound for the maximum number of concurrent active users.

• Application users – Indicates how many people actually use the application (not just
downloaded it).

• Active user rate – Provides the ratio of the number of application users to the total number of
downloads.

• New users – Provides the number of users who first used the application within a period of
time (particularly interesting when compared to the attrition rate that can be derived from the
active user rate).

• Frequency of visit – Provides the ratio of the number of visits to the number of users over a
period of time (can be used to gauge user loyalty).

• Depth of visit – Indicates the number of screens viewed during the average visit.
• Duration – Indicates the average amount of time spent in the application.

American
Software Testing
Qualifications Board

Version 2015 Page 14 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

• Bounce rate – Provides a ratio of the number of user visits that had only a single view (people
who downloaded the application, tried it, and then never used it again).

These metrics can be used to identify high risk areas that can be addressed by testing or
development. For example, a high bounce rate may indicate usability issues. The active user rates
can be used to develop realistic performance testing goals.

2.3 Determine Coverage Goals
Once the risks have been identified and assessed, the coverage goals must be determined. While the
tester will need input from others, such as the test manager, it is important to consider all the areas to
be tested and get agreement with the team that the coverage goals are realistic and will accomplish
the testing goals for the project.

The following areas should be considered and the desired coverage determined before starting testing
on the project:

• Requirements – If there are requirements, requirements coverage should be used as one of
the testing guidelines. Traceability from the tests back to the requirements is useful because
requirements for mobile applications often change as new features are added and existing
features are updated or modified. The traceability will help the tester know which test cases
need to re-executed when changes occur.

• Risks – The identified risks must be addressed by testing, and traceability may be needed
between the test cases and the risk items.

• Functions – The capabilities of the software will be tested but should also be tested in
accordance with the risk associated with each. A complete list of functions will help to set the
risk levels as well as to track coverage of each of these items.

• Code – Because of the speed of the development of mobile applications, unit testing is very
important and code coverage goals should be stated before development starts. Automated
unit testing, particularly when employed with continuous integration and deployment, will help
to improve the quality of future updates as the same tests can be run each time without
significant manual time and effort. Fault metrics and technical debt measures can be used to
track the quality of the software.

• Devices – Coverage across devices must be known at the beginning of the project so those
devices can be procured or simulators can be bought or built. The developers must provide
input regarding the expected variability between devices so intelligent decisions can be made
regarding which device behavior can be determined to be representative. Device-based
application testing is usually prioritized based on the expected usage of particular devices with
particular applications. Since it will not be possible to execute all test cases on all devices
(and the permutations of those devices), allocating the test cases across the supported device
configurations is an important risk mitigation activity.

• Connectivity – Coverage must include the way in which a device connects to the Internet
(including cellular, WiFi, Ethernet, and in some cases the ability to switch). This should also
include access to any additional services (such as loading style sheets) and potential side-
effects of network issues such as latency, jitter and re-tries.

• Geography – The geographic location of expected use can influence the testing. If an
application is expected to be used only at high altitudes, the test environment will need to take
that into account. Devices that must respond to intermittent or slow networks will be tested
differently from those that will only be used in offices with highly reliable, fast networks.

• User Perspectives – Designing good test cases requires a knowledge of the users including
their expectations, knowledge, capabilities, personas, and operational profiles (what they will
be doing). Testing will need to simulate usage by the various expected users.

American
Software Testing
Qualifications Board

Version 2015 Page 15 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Understanding the coverage requirements for testing is important for setting the scope and timelines
of the testing effort as well as to help determine the types of equipment and environments that will be
needed.

2.4 Determine Test Approach
Once the coverage goals are determined, the proper test approach can be decided. The test
approach must consider the following:

• Environments – The tests must be conducted in certain environments and those environments
may also have associated conditions (e.g., outdoors while raining).

• People – The product is intended for certain user types. The actions of those users must be
built into tests including any variability based on the user (e.g., someone with poor eyesight
may always zoom images to view them).

• Industry context – The target industry can influence the required test approach (e.g., safety-
critical, mission-critical, COTS, games, business applications, social network).

• Schedules – The reality of the schedule must be considered when determining the test
approach, with the highest priority (highest risk) tests being conducted first.

• Scope – The testing scope must be limited and clearly stated to set the expectations for the
coverage to be achieved and the risk mitigation goals.

• Evaluation – Evaluation of test results tends to be different for mobile projects because much
of the non-safety-critical testing is done with less structured techniques and with simulators
and emulators. The evaluation method must be clearly stated and understood by the team
members so they will understand test status reports and the final test summary report.

• Methods – Testing methods vary for mobile projects. These are discussed in Chapters 3 and
4 regarding specific quality characteristics, environments and tools.

Depending upon the formality and criticality of the project, the test approach may be documented in a
traditional test plan or may be informally documented in a brief project document. Either way, the
approach should be documented because agreement to the approach is critical within the project
team.

2.5 Identify Test Conditions and Set Scope
The test conditions are the building blocks of the testing to be conducted in a mobile application
project. Time to create test cases may not exist in a fast-paced project. In this case, identifying the
test conditions, assigning risk-based priorities to each and conducting testing to address each of
identified condition may be the most efficient method for testing within the limited timeframe.

Test conditions consist of the physical capabilities of the software within the device (e.g., buttons,
icons, screen zooming, device rotation, geolocation), the functionality of the application (e.g.,
displaying an image, displaying a map, accessing a bank balance) and the non-functional areas such
as performance and usability. Each of these capabilities and features has a number of conditions that
should be tested. Using the risk assessment, these conditions can be prioritized for testing and the
scope of testing can be set. For example, if the application will access banking information, the
application may have a login capability. To test this login, the tester needs to test a valid
username/password, invalid username/valid password, valid username/invalid password, and so forth.
Each of these combinations is a test condition. Since there can be many test conditions for a single
feature of the software, it is important to identify the critical and high risk conditions to be sure those
are tested. The low risk items may be left untested or may be tested as part of other tests.

Identifying and prioritizing the test conditions sets the scope for the testing. With limited time,
priority/risk-based testing will ensure the most important items are tested to some level of coverage.
When time runs out and the coverage is deemed sufficient, testing is complete.

American
Software Testing
Qualifications Board

Version 2015 Page 16 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

2.6 Regression Testing
Regression testing for mobile applications is particularly challenging. Not only does the software
change rapidly (including the firmware), but the devices are continually changing as well. The more
devices supported, the larger the set of changes. Regression testing should be conducted regularly
for mobile applications, even if the application itself has not changed. As discussed in this syllabus,
test automation and access to device labs and simulators is critical to a successful mobile application
project and are required for a good regression test practice. When regression testing is automated
and devices are available (via labs or simulators), the regression testing can be scheduled to run at
regular intervals such as once a week. This does require that the test devices and simulators are also
being updated regularly so the regression testing is reflecting the functionality of the software on the
target devices.

American
Software Testing
Qualifications Board

Version 2015 Page 17 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

3 Quality Characteristics for Mobile Testing - 290 mins

Keywords
geolocation, TeststormingTM

Learning Objectives for Quality Characteristics for Mobile Testing
3.2 Functional Testing
MOB-3.2.1 (K3) For a given mobile testing project apply the appropriate test design techniques
MOB-3.2.2 (K1) Recall the purpose of testing for the correctness of an application
MOB-3.2.3 (K2) Explain the important considerations for planning security testing for a mobile

application
MOB-3.2.4 (K2) Summarize the concepts of perspectives and personas for use in mobile application

testing
MOB-3.2.5 (K2) Summarize how device differences may affect testing
MOB-3.2.6 (K2) Explain the use of Teststorming for deriving test conditions

3.3 Non-Functional Testing
MOB-3.3.1 (K3) Create a test approach that would achieve stated performance testing goals
MOB-3.3.2 (K1) Recall aspects of the application that should be tested during performance testing
MOB-3.3.3 (K2) Explain why real devices are needed when simulators are used for testing
MOB-3.3.4 (K3) For a given mobile testing project, select the appropriate criteria to be verified with

usability testing
MOB-3.3.5 (K2) Explain the challenges for portability and reliability testing mobile applications

3.1 Introduction
Mobile applications, similar to other applications, have functional and non-functional quality
characteristics that must be tested. While all the quality characteristics mentioned in the Foundation
syllabus [ISTQB_FL_SYL] are applicable, this syllabus covers those that are particularly important in
the mobile application testing scope. While not all of these are applicable to every mobile application,
each should be considered to ensure that nothing is skipped and to ensure testing is prioritized
correctly.

3.2 Functional Testing

3.2.1 Introduction
Functional testing is designed to assess the ability of the application to provide the proper functionality
to the user. It tests what the software does. For mobile applications, functional testing covers the
following:

• Correctness (suitability, accuracy)
• Security
• Interoperability

Each of these is discussed in the sections below.

American
Software Testing
Qualifications Board

Version 2015 Page 18 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

3.2.2 Correctness
Correctness testing is done to ensure the software provides the right functionality in a way that works
for the user (suitability) and that the functionality is provided correctly including all data delivery
(accuracy). If the capability is there, but it is not delivered in a suitable way, the product may be
unusable. For example, if a smart phone application cannot scale an image down to fit on the screen,
it is not suitable. If it can scale the image, but it is the wrong image, it is not accurate.

3.2.3 Security
While security testing is best left in the hands of the security experts, all testers should have some
awareness of security vulnerabilities and areas that should be covered by testing. Some tools are
available that can help with security testing, such as static and dynamic analysis tools, but good
security testing requires a current knowledge of security issues, testing methods and tools, and the
technical ability to create security tests (which often involve coding).

3.2.3.1 Security in Mobile Testing
Security in mobile applications poses more threats than traditional applications. The following should
be considered when planning security testing or considering what should be tested:

• Mobile applications are generally more easily attacked by hackers than traditional
applications. This is partly due to the lengthy communications over public networks and partly
due to the tendency for users to download many potentially vulnerable applications which can
expose other applications residing on the device.

• People are too trusting. They tend to download applications without concern although they
would never open an email attachment from someone unknown. A great deal of personal
information is kept on mobile devices such as smart phones and tablets because they are
convenient and always available. Rather than recording passwords on a sticky note on a
desk, passwords are often recorded in the notepad application on the device itself.

• Devices get left behind. People misplace mobile devices frequently. This leaves the device
open to tampering, particularly when it is protected by a single short password or pattern.

• Mobile devices are often donated, sold or traded-in without the existing data being wiped. This
provides a rich opportunity for the recipient to access all types of user data – passwords, user
names, pictures, videos, contact information (e.g., name, phone, e-mail).

An important part of mobile application development is to compensate for the lack of security
knowledge on the part of the user. An important part of testing mobile applications is to ensure that
the security is in place and is working correctly. Testers need to make sure sensitive information,
such as passwords or account information, is not stored unprotected on the device. While malware
(hostile or intrusive software) will always exist, the application should protect itself from attack and the
device itself should have some protection to validate installed applications.

While it changes year by year, the following is the list of the top 10 mobile risks in 2014 according to
[OWASP]:

• Weak server side controls
• Insecure data storage
• Insufficient transport layer protection
• Unintended data leakage
• Poor authorization and authentication
• Broken cryptography
• Client side injection
• Security decisions via untrusted inputs
• Improper session handling
• Lack of binary protections

American
Software Testing
Qualifications Board

Version 2015 Page 19 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Knowing the security risks helps the tester know what to test and can help as a reminder for
developers when they are coding.

3.2.3.2 Security Testing Approaches
Because security testing is often carried out by security testing experts, the tester may not need to
know how to set up and complete security testing. It is however important for a tester to ensure they
are covering the basics during their testing. This includes testing the following:

• Access – Ensure the right people and applications have access and those without
permissions are denied access. Also ensure that access is limited to only the functions and
data that the user should be able to access. This is similar to access security for any type of
application.

• Protecting data while on the device – When data is stored to the device, it must be secure.
This means that such information as passwords, account information, credit cards and so
forth that are used in transactions are not stored in an accessible format on the device even
during the transaction.

• Protecting data that is in transit – Information is passed between the device and servers via
the network (e.g., cellular, WiFi) and information that is passed between devices (e.g., WiFi,
Bluetooth, SMS). Any data that should be secured must be encrypted during this transition to
protect it from interception and misuse. This includes transactions that may encounter errors
or have to be retried.

• Policy-based security – Organizations may have security policies that indicate how data is
handled and who may access it. When data is being transferred to/from a device or stored
on a device, these policies apply just as they would with a non-mobile application.

As with any testing, it is important to understand the application and its uses. Security for a banking
application will not be the same as that used for a memory game.

3.2.4 Interoperability
Mobile applications must be tested for interoperability to ensure they interact properly with other
components, devices and systems. Mobile applications must be able to exchange information and
images with other software. For example, an image captured by the camera can be sent via email on
a smart phone.

Testing for interoperability is highly dependent on the capabilities and interactions of the application
being tested. At a minimum, an application likely transfers data back to a web server that maintains a
storage of information (e.g., highest score achieved in a game, the current weather forecast). It is not
unusual for applications to act alone and with other applications loaded on the same device. Since
new applications may be added at any time to a device, trying to test for the superset of interacting
applications will likely lead to frustration. This is why the risk-based approach using a lightweight
means to capture this information is a good way to approach the problem of too much to test in too
short a time period.

Interoperability testing can be expanded into verifying compatibility of the application across
environments. An application may need to work on a variety of devices operating at different speeds.
This form of interoperability testing is sometimes called compatibility testing. One factor that makes
compatibility testing of mobile applications and mobile web sites so challenging is the number of
browsers and versions supported by each application and device brand/type. It is important to know
the list of devices on which the application is intended for use so a reasonable testing matrix can be
developed and the testing can be divided between the devices using techniques such as the
combinatorial testing techniques. Sources of configuration information include web server logs, web
analytics and store analytics (such as iTunes and Google Play) to see which percentage of users for a
particular application use a particular device/browser.

American
Software Testing
Qualifications Board

Version 2015 Page 20 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

3.2.4.1 Device Specific Considerations
Mobile devices are varied and have a wide range of capabilities. One of the factors in interoperability
testing is understanding the commonalities and differences between devices. Specific versions of
devices may have different capabilities that may affect an application’s capabilities and usability. For
example, an application running on a slower device (or one with less memory) may exhibit different
characteristics than one running on a fast device. An anti-glare screen protector may render certain
user interface designs difficult to read and/or access. This device specific information tends to change
rapidly and should be determined immediately prior to testing. It may also be necessary to anticipate
new device features so that testing can occur before the features are widely available (e.g., higher
speed, bigger memory, operating system requirements).

3.2.4.2 Testing Peripherals
It is also important to remember that devices may have peripherals attached or built in such as
scanners, card readers, bio recognition equipment (e.g., fingerprints scanners), cameras, altimeters,
microphones, speakers, and so forth. If the application may use a peripheral or may be affected by
the presence or absence of a peripheral, the application must be tested both with and without the
peripheral. This is a consideration if simulators will be used for testing since simulators for peripherals
may be needed. In the case of peripherals though, actual device testing is usually required to some
degree.

3.2.4.3 Device Differences
Mobile devices have many differences, even within the same type of device such as a tablet. For
example, communication protocols may be different, transmissions may or may not be secured, the
device may have the capability to be docked and transfer information. A device may be able to
recognize other devices of its type when they are within a certain geographic area. The variability
between devices and the commonalities they share all introduce testing opportunities. It’s important to
understand how an application will interact with a device or set of devices and how differences in
those devices may affect the application. For example, a device may share geolocation information
with the application which then shares it with other applications and allows communication to other
applications that are running on similar devices in the same area. If the geolocation information is
secured on one device, but not on another, what will happen?

As devices add more and more features and more devices enter the market, these differences will
become a larger factor in testing.

3.2.5 Test Design
When designing the tests for a mobile application, the following should be considered:

• Functionality of the application
• Functionality of the device
• Risk within the subject domain of the application (e.g., a mobile device used to deliver medical

information to ambulances)
• Network connectivity
• Operating systems
• Power consumption/battery life
• Type of application (native, hybrid, etc.)

The functionality of the application can be determined from the requirements, use cases,
specifications or even conducting exploratory testing to learn about the application. The functionality
of a device, particularly if the device is made by another organization, must be determined by reading
the published specifications, experimenting with the device or from talking with others who are familiar
with the device. Designing tests for a mobile application requires considering both the features of the
application to be tested as well as the capabilities of the device.

American
Software Testing
Qualifications Board

Version 2015 Page 21 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

The capabilities and features of the target device must be understood, particularly if those capabilities
will be utilized by the application. The following is a list of some of these capabilities, but remember
the list is always expanding:

• Screen size and resolution for display
• Geolocation (ability to detect the device’s geographic location)
• Telephony (ability to act as a telephone)
• Accelerometer (senses acceleration on three axes – up/down, side to side, back and forth –

used for games and orientation)
• Gyroscope (senses orientation based on angular momentum)
• Magnetometer (measures the direction of magnetic fields – can act as a compass)

If the application depends on using a magnetometer for example, the test design must include tests for
devices with various types of magnetometers as well as for devices without the capability.

In addition to the functionality, test design also needs to include installation of the application. Many
applications can be installed over-the-air (OTA) which means that testing needs to include
interruptions at any point in the installation, re-installation, upgrades and de-installation. Permissions
and payment may also be required to install applications and so must also be tested.

The risk of the application is assessed by the means discussed in section 2.2, Identify and Assess
Risk.

3.2.5.1 Using Core Foundation Techniques
The standard black-box test design techniques are explained in the ISTQB Foundation syllabus
[ISTQB_FL_SYL] and further developed in the ISTQB Advanced Test Analyst syllabus
[ISTQB_ATA_SYL]. These techniques are applicable for mobile application testing and are valuable
in testing both applications and devices. Use of these techniques will help the tester ensure that the
desired test coverage is achieved. These techniques are briefly summarized here:

• Equivalence partitioning (EP) – Determine equivalences classes based on equivalent
processing and test one item from each class assuming the results for the one item are
representative of the entire class. For example, assume all cameras with the same megapixel
capabilities will create an image of the same quality.

• Boundary value analysis (BVA) – Select tests based on the boundaries of ranges of inputs or
outputs. For example, test the maximum number of names that can be stored in a contact list,
test maximum + 1, test one and test zero.

• Decision tables – Test combinations of inputs and/or stimuli (causes) with their associated
outputs and/or actions (effects). For example, test that an incoming email results in the
configured sound.

• State transition models – Test the transitions between two states of a component or system.
For example, test that the display changes from bright to dim when the exterior light changes.

• Use cases – Test the primary (main) scenario and all alternate scenarios. For example, test
that a delivery driver can note that they delivered a package, get a signature and record the
location of the delivery.

• Experience-based techniques
• Exploratory testing – Test by simultaneously designing and executing tests while

learning about the application. For example, for a new application, test it by using it to
accomplish a single task and document any defects found.

• Attacks – Test by targeting specific expected faults in the software. For example,
target communication security.

• Defect-based techniques – based on a defect taxonomy, target specific defect types for
testing. For example, test handling of invalid inputs.

American
Software Testing
Qualifications Board

Version 2015 Page 22 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

• Combinatorial techniques – Test across different combinations of characteristics based on the
information supplied by the model. For example, use pairwise testing to determine the
combinations of devices and device features on which to test the application.

Some of these techniques, particularly state transition models, are well-suited to testing interactions
between the device and the software. Others, such as equivalence partitioning and the combinatorial
techniques help to reduce the test set down to a manageable size. Experience-based and use case
testing help focus the tester toward real world usage and scenarios

3.2.5.2 Using Mobile Specific Techniques
In addition to the techniques in the section above, there are also techniques that are commonly used
in testing mobile applications. There are some overlaps between this list and the list above, but the
best combination of techniques to use should be determined by the features of the application, the
capabilities of the device that interact with the application, the criticality of the application, the time
available, and the skills/knowledge of the tester.

The following techniques are commonly used in mobile application testing:

Session-based – these testing sessions are designed to be uninterrupted from start to end, reviewable
by other testers or managers and chartered to ensure the focus matches the goals of the testing.

Exploratory testing can be expanded into the concept of exploring different user perspectives.
Because the user base is so varied, it’s important to consider the different perspectives those users
bring to their usage of the device. The goal is to simulate real usage and concentrate on specific
aspects of the software and its interaction with the device [Whittaker]. These perspectives and usage
scenarios should cover the following:

• Skill level of the user (see persona-based testing below)
• Location of the user (e.g., indoors, outdoors, home, work, in a car, on a plane)
• Lighting in the environment (e.g., dark, bright sunlight)
• Weather conditions (e.g., rain, wind)
• Connectivity (e.g., strong, weak, intermittent)
• Accessories available (e.g., interaction with each)
• Motion (e.g., stable, in hand while walking)

Scenario-based testing, similar to use case testing, tests the paths that a user is likely to follow to
perform a defined task. The validity of the scenario directly influences the effectiveness of the test.
Testing scenarios that a user will not follow can result in wasted time that could be better spent testing
frequently used paths.

Because the user base is so varied, it is important to consider the different types of people that will be
using the software. People vary widely in skills, capabilities, and needs. The following is a list of
some of the personas that can be used for persona-based testing:

• First time user
• Casual user
• Frequent user
• Expert user
• Confused user (does not understand any of the software)
• Angry user
• Frightened user (afraid of technology)
• Impatient user
• Malicious user
• Playing user (experimenting with the software)
• Technically knowledgeable user
• Age class user (e.g., over 65)

American
Software Testing
Qualifications Board

Version 2015 Page 23 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Persona-based testing requires that the tester understands the viewpoint of the user and is able to
interact with the software as that user. This can be a difficult task, particularly when the tester’s level
of knowledge is much higher than the user persona being tested. Good usability requirements will
help to cover the software characteristics that are needed to accommodate the various user personas.

Because device and application usage can be so varied, it is often helpful to approach testing from a
viewpoint that is independent from the requirements. For example, TeststormingTM [Rice] may be
used to derive test cases and scenarios via brainstorming or using mindmaps. This technique helps
the tester to think of new and creative uses of the software that might not have been considered
during the design and development of the product. As the usage and capabilities of mobile devices
continues to expand, test case creation requires forward thinking, beyond what is stated in the
requirements.

Reminder checklists are helpful when testing mobile applications to help the tester ensure that all
aspects of the software are being addressed by testing. Since requirements for mobile applications
tend to be lightweight, the tester cannot rely on these documents as the only guide for testing.

3.3 Non-Functional Testing
Non-functional testing concentrates on how functionality is delivered to the user. For a more complete
discussion on non-functional testing, see [ISTQB_FL_SYL]. This section concentrates on the non-
functional quality characteristics that are of primary importance in testing mobile applications.

3.3.1 Performance Testing
In general, performance testing is verifying the response time of the system when it is experiencing a
defined load. Performance testing also considers throughput and resource utilization. With mobile
applications, there are more considerations for performance testing such as network connection type
and strength, device type, device memory and other conditions that may be difficult to control. Mobile
applications are used for a wide variety of capabilities, but some applications have higher performance
requirements than others. For example, GPS location applications that may be using the geographical
position of the device to transmit driving directions have critical performance requirements in order to
be able to adjust for changes to the planned course. Applications that are used for time-critical
transactions, such as stock trading, also have stringent performance requirements. Applications that
provide media have requirements to provide consistent performance that is sufficient to provide a
good user experience without problems such as pausing during video display.

3.3.1.1 Performance Testing for Mobile Software
In addition to the normal performance testing that should be conducted regarding the server’s ability to
handle traffic [see ISTQB_FL_SYL], there are other considerations for mobile application testing.
Network connectivity plays an important part in the performance of a mobile device. Variables such as
connection speeds, time required to connect and reconnect if disconnected and network latencies are
all factors in the ability of the application to deliver the desired performance. Unreliable or inconsistent
network connectivity may result in multiple re-tries or the application trying to proceed with some data
loss. This can be particularly critical if the loss is from information the application needs to function.

Performance testing a mobile application starts with ensuring that the application itself, and its
interactions with the server, are as efficient as possible. A slow application or slow response from the
server will only get worse when the application is running on a mobile device. In addition to the
normal tests, mobile application performance testing should also cover the following aspects for the
application itself:

• Application launch time – This includes the time from the user’s first indication that they want
to use the application until the time the application is fully usable.

American
Software Testing
Qualifications Board

Version 2015 Page 24 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

• User interface delays – This is the time that is spent between receiving a user interaction (e.g.,
pushing a button, moving an image) until the time the application provides the response to the
user.

• Irregular performance – This is a problem when the performance is noticeably varied for the
same type of transaction.

• Visual indicators – As with any user interface, the user must be given an indicator that
processing is occurring and there is a wait. Since these indicators usually appear after a
certain length of waiting time has occurred, it is important to test to ensure that the indicator
appears correctly even when performance is degraded.

• Resource usage – A mobile application is likely running in a shared environment. This makes
efficient usage of CPU, memory and battery important not just for the application but for the
overall device as well. Mobile devices are rarely running just one application. Performance
must be verified with an expected set of other applications and processes running. This will
help to verify what the real user experience will be when running the application under test.

• Task completion – This is an overlap between usability and performance, but it is important to
test the time it takes for a user to complete tasks that they would expect to accomplish with
the application.

• Code inefficiencies – While the code contained in a mobile application may be compact, it is
still possible for the code to have bottlenecks, endless loops or other inefficiencies that impact
overall performance. These inefficiencies can be detected by static analysis (reviews and/or
tools) and well as dynamic analysis (tool-driven).

In addition to these, web applications also need to be tested for:
• Site page loading time – Since a mobile application may be running from a web site, the time it

takes to load the site pages can have a significant impact on the user’s experience with the
application.

• Delays – Delays can occur for many reasons, particularly those related to server and network
time.

• Resource usage – While a web application will take less memory and CPU from the device, it
may require more network bandwidth from the device because of the larger amount of data
being passed back and forth from the server.

3.3.1.2 Performance Testing Approaches
Identifying valid personas is important for both performance and usability tests. Personas define the
characteristics of the user as well as the tasks the user is trying to accomplish. By using this
information, scripts can be built that can simulate typical user transactions. These personas can be
duplicated by automated tools to provide multiple virtual users who will interact with the system
through a device in a prescribed way. Since devices may be difficult to procure, device simulators are
often used to supply the same interaction as the device without requiring the actual device to be
present during the testing.

Performance goals and testability goals must be established when the application is being designed
and the target environments are being specified. These goals can then be used to compare against
the actual results of the testing. Performance testing can start as soon as individual components are
available. By building and executing performance tests as the application is being developed,
particularly in a continuous integration environment, poorly performing components can quickly be
identified.

The environment will always have an impact on the application’s performance. A device that is
inherently slow due to poor design, high overhead, slow communication, or any other factor will cause
the application to appear to perform slowly as well. When testing with simulated devices, it is
important to include a set of real devices to ensure the simulated performance is reflective of the
performance that will be experienced by a real user on a real device. It is also important to
understand what is being tested. A mobile application that is deployed on a user’s device has different

American
Software Testing
Qualifications Board

Version 2015 Page 25 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

performance concerns than a web application that is accessed from a mobile device. Understanding
these differences before designing performance tests will help ensure valid results and the proper
focus of the testing.

Overall poor performance may cause people to abandon the application. What is “slow” is determined
by the user, and user expectations are continually being refined so that yesterday’s fast performance
may be unacceptably slow tomorrow.

3.3.2 Usability Testing
Mobile applications tend to have a wider and more varied user base than traditional applications. This
is partly due to the ease of access to these applications and partly due to general acceptance that
applications should be available anywhere, anytime. This poses significant usability concerns,
particularly on the part of those planning and conducting usability tests.

3.3.2.1 Usability Testing for Mobile Software
In addition to traditional usability areas such as navigation, colors, sounds, accessibility, and others,
mobile applications have some additional areas for testing. These include:

• Simplicity – Mobile applications must be designed for simplicity and ease of use.
• Layout – Interaction with mobile applications is sometimes done via a device such as an

electronic pointer or pen, but many devices require the use of fingers. This means the
application must allow space for fingers and perhaps for displaying a keyboard that is large
enough to be used for text entry.

• Intuitiveness – Users expect to be able to load a mobile application and immediately use it.
They may experiment with it for a bit, but they will quickly decide if it is intuitive to use or just
too difficult. If it is too difficult, most users will discard the application and look for another. If
instructions will be displayed to the user, they must be visible, but not intrusive.

• Navigation – While navigation is a concern with traditional applications as well, it is even more
important for mobile applications. The user has an expectation to be led in the direction they
need to go rather than having to determine their path from a list of many options. Mobile
applications are expected to be simple and easy to navigate.

Mobile applications, more than traditional applications, will experience a high rate of abandonment if
they are not considered usable by their users.

3.3.2.2 Usability Testing Approaches
As was mentioned in performance testing, personas are needed for usability testing to ensure testing
is covering a representative set of user types. It is important to remember that users are not just end
users. Applications are sometimes used to increase sales for a company. If a particular campaign
has been used across the mobile applications for a particular company, that company’s sales team
may need to see metrics regarding number of downloads, number of responses, and other
information.

User expectations are an important consideration. This is an area where expectations can be
expected to change as more applications become available, new and improved devices are introduced
and speed is improved. Usability experts will be challenged to stay current with market expectations
for product usability.

When approaching usability design and testing, real users are needed. Observing users actually
using the application will help target the testing to cover real usage scenarios and may also highlight
areas where the interface is confusing or navigation is unclear. If possible, obtaining user feedback is
also helpful to understand what they like about the application and to identify areas where
improvement would be helpful. Usability labs and surveys may be used to help accomplish obtaining
this information in a controlled environment.

American
Software Testing
Qualifications Board

Version 2015 Page 26 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

In addition, simple metrics can help bring objectivity to the subjective topic of usability. Measuring
items such as the following can be helpful in understanding usability factors:

• The number of tasks fully completed
• The time taken to perform a complete task
• The mistakes made in performing a task or series of tasks
• The number of clicks (actions) needed to perform a task

These measures can also be obtained by first, second and third attempts which can then be used to
determine the learnability of the application.

Effective usability testing can be conducted with a small set of representative users [Nielsen]. If the
users fit the identified personas, they can provide valuable feedback relatively inexpensively that can
be used to improve the application and improve future designs.

With mobile devices being used by so many people, accessibility must be considered during testing. If
compliance to particular accessibility standards is required, it is important to obtain tools that can scan
the application for compliance or to conduct the manual testing necessary to ensure compliance.
Accessibility considerations include such items as readability, color usage, sound usage, human
interaction such as typing, ability to resize the screen or change contrast, and so forth. It is also
important to consider accessibility in terms of environmental challenges such as bright sunlight,
darkness, rain and so forth.

Mobile devices are feature rich and this feature set is sometimes dependent on accessories to the
base mobile device. Accessories include cameras, scanners, credit card readers, headphones,
keyboards, and other devices that can be built into or attached to the base device. When testing an
application, it is important to consider any accessories that might interact with the application or the
environment shared by the application. Consideration must be given to concurrent processing when
using accessories. For example, a credit card reader might supply input to a banking application
running on the phone, but that card reader might not work when the camera is also in use. These
types of interactions between accessories must be considered when selecting test device
configurations.

3.3.3 Portability Testing
Portability testing focuses on how well an application will function when moved into a target
environment. Good portability testing requires a good understanding of the target environments and
the characteristics of those environments.

3.3.3.1 Portability Testing for Mobile Software
Mobile software is intended to run on a mobile device. Devices are plentiful and the numbers, types
and capabilities continue to increase. Mobile testing is usually concentrated on a subset of
representative devices intending to cover the most common environments and environment variables
that could affect the application under test. The key to good portability is a good design. It is
important for the tester to work with the developer in determining areas to be tested due to device
differences. For example, a developer is usually aware of modifications that were required for an
application to work on both iOS and Android devices. That said, developers will sometimes miss
nuances between devices and between different versions of similar devices. Obtaining a good set of
representative devices can be split between procuring the actual devices and using accurate
simulators for some devices.

3.3.3.2 Portability Testing Approaches
Users do not usually have an awareness that an application may have to be modified to work on
different devices. This results in an expectation from the user that a mobile application will work on a
set of devices and that they can expect the same level of usability from the application on a smart
phone, a tablet and a PC browser. This may not be a realistic expectation, but it is often a tester’s job
to verify which environments enable the application to work and work well.

American
Software Testing
Qualifications Board

Version 2015 Page 27 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Portability testing for the present requires testing across a known set of devices and software
versions. Portability testing for the future requires anticipating which devices will still be popular, what
potentially conflicting or limiting features they may have and how a user will expect to use them.
Because the field of mobile devices changes so rapidly, it’s important for a tester to understand the
new devices and the planned release dates for the major new changes. Procuring updated hardware
devices can be expensive but simulators tend to lag behind the introduction of the physical device. As
a result, sometimes the market is testing an existing application on a new device before the test team
has a chance to try it.

Developers must do their best to future-proof their designs. Device manufacturers will normally
maintain a level of backward compatibility (meaning that software that ran on the previous versions will
still run on the new version), but there is a short life span in mobile devices and old releases will fall
out of support more rapidly than is seen with desktop software.

Portability testing must consider whether the application is using a native device interface or a more
portable interface. An application using a native device interface will likely encounter portability
problems when the application is installed and run on a different type of device. An application with a
more generic interface is designed to be ported to different devices.

Software that has been ported to another environment will sometimes exhibit performance and
usability differences in the new environment. Any porting project must consider additional
performance and usability testing to ensure an acceptable level is still achieved. For example, a
mobile application that displays flight information might be quite readable on a tablet, but might not
scale correctly or allow resizing on a smart phone. Similarly, software that was written to be fast on a
specific device may be quite slow on a different device just because it is not optimized for that
environment.

3.3.4 Reliability Testing
Because mobile software is everywhere and in many hands, it has become an important part of both
business and personal life. As people become more and more dependent on it, reliability becomes an
important quality characteristic. Some mobile applications are safety-critical and require extremely
high reliability. Reliability equates to the robustness of the software including how well it handles
faults (fault tolerance), how quickly it can recover from a problem if one should occur, and how
consistent it is in providing the same result for the same actions.

3.3.4.1 Reliability Testing for Mobile Software
Testing for reliability requires causing failures and verifying that the software correctly detects the
failure and either handles it or recovers gracefully. It is important that mobile software is able to
reconnect when connections are lost and continue processing without losing any transactional data.
Mobile devices, by definition, move around. They go to places with poor network connectivity. They
go in tunnels and underground. They go in airplanes. At a minimum, mobile devices go everywhere
people go and this creates a large set of potential reliability issues.

While mobile device reliability testing must be concerned with such things as temperature tolerance,
impact, submersion, extreme heat and cold, and so forth, the applications running on the device must
be able to respond to the effects of these conditions on the device including device failure.

3.3.4.2 Reliability Testing Approaches
Mobile applications must be tested for the same reliability issues as any other application. This
includes insufficient memory or other resource constraints, hardware failure, and network or
communications failures.

American
Software Testing
Qualifications Board

Version 2015 Page 28 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

In addition to the traditional reliability tests, testing must also include the ability of the application to
handle low battery levels, shutdown conditions, complete power failures and similar power related
issues. Because mobile devices usually run on battery power, power failure poses a risk with a higher
likelihood than would be expected for a traditional application. Similarly, issues with network
connection, disconnection and reconnection (including switching such as from cellular to WiFi) must all
be tested because of the high likelihood of occurrence. Mobile devices tend to be shut down less
frequently than traditional computers which results in a longer period of operation which can allow
problems such as memory leaks to become more apparent.

Reliability can also be measured by determining how long a mobile application can operate
continuously without failure (or without recharging the battery). This can be performed by creating and
performing simple automated tests and measuring the mean time between failures (MTBF). When
failures occur, they can be captured in reliability failure scenarios. These scenarios can be provided to
the development team to help them design stronger mobile applications that will prevent or handle the
defined failures. It will also allow the developers to create recovery procedures if the failures do occur.

American
Software Testing
Qualifications Board

Version 2015 Page 29 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

4 Environments and Tools - 285 mins.

Keywords
emulator, native device, simulator

Learning Objectives for Environments and Tools

4.1 Tools
MOB-4.1.1 (K1) Recall the expected capabilities for mobile application testing tools
MOB-4.1.2 (K2) Explain the use of generic tools in testing mobile applications

4.2 Environments and Protocols
MOB-4.2.1 (K1) Recall the sources of data for a mobile application

4.3 Specific Application-Based Environment Considerations
MOB-4.3.1 (K2) Explain the differences between browser-based and native device applications

4.4 Real Devices, Simulators, Emulators and the Cloud
MOB-4.4.1 (K2) Explain why testing is not conducted entirely on real devices
MOB-4.4.2 (K3) For a given mobile testing project, determine how and when to use

simulators/emulators during testing
MOB-4.4.3 (K1) Recall how to verify the reliability of a simulator/emulator
MOB-4.4.4 (K3) For a given mobile testing project, determine how and when to use cloud-based

testing

4.5 Performance Test Tools and Support
MOB-4.5.1 (K2) Explain how the cloud can be used to support performance testing
MOB-4.5.2 (K2) Explain the types of data a performance tool needs to be able to create and track

Common Learning Objectives
The following learning objective relates to content covered in more than one section of this chapter.

MOB-4.x.1 (K3) For a given mobile testing project, select the appropriate tools and environments for
testing

4.1 Tools
The mobile device and application market is expanding rapidly. Fortunately, the tools for testing the
mobile applications are keeping up with the explosion. The tester now is confronted with trying to
select the best tool from a large set of changing tools with varying capabilities and reliability. This
section will better prepare the tester for understanding the tool options and provide information to help
select the best tool for the specific application and environment.

American
Software Testing
Qualifications Board

Version 2015 Page 30 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

4.1.1 Application to Mobile
There are plenty of test tools on the market, but it’s important to discern between tools that provide
general testing support and those that are specifically aligned to testing mobile applications. In
general, tools that are focused on mobile testing should be able to do the following:

• Adapt to different environments and protocols
• Simulate a native device
• Support testing across iOS, Android and other operating systems
• Simulate multiple users simultaneously
• Support mixed and varying locations of devices
• Support or simulate networks of varying speeds and quality
• Simulate or provide connections that can be disconnected and reconnected

When seeking a tool, the tester must understand the capabilities of the application, the environments
to be supported, and the testing requirements in order to select the tool most suited to their needs.
Because the market is changing so quickly it is important to use good tool selection processes and
ensure the vendor has created and will support a quality product. Pilot tests are needed to ensure the
tool will work in the specific environment. For a more complete discussion on tool selection and
deployment, see [ISTQB_FL_SYL]. Even if the purchase price of a tool is low (or free) the
organization will still invest a considerable amount of money to implement and use the tool. Proper
evaluation processes need to be followed for any tool procurement, even a low cost one.

Tools should be evaluated for ease of use. As the mobile testing tools increase on the market, the
usability will become better. Sometimes it makes sense to wait for a later version of a tool if it will
have a vastly improved interface. As with any tool, remember the skill sets of the tool users and
ensure the tool will provide the necessary functionality in a way that is accessible to the tester.

4.1.2 Generic Tools
Generic tools are still useful when testing mobile applications. For example, test management tools,
defect management tools, and requirements management tools are all still needed. Build tools,
continuous integration/deployment and unit testing tools are still needed to support the development
process. Since many mobile applications also have a backend component, tools used in the testing of
the software running on application servers, web servers, and database servers are still needed. In
general, the background or supporting software will be tested in the same way for mobile applications
as it would be for client or web applications.

4.1.3 Commercial or Open Source Tools
Commercial tools are those made by a company, for profit. While these may be considered by some
to be more reliable, they tend to lag behind the market needs. Open source tools are created by
interested individuals or communities who have created a tool for a specific need. Open source tools
tend to be focused on solving a particular problem whereas commercial tools are designed to address
a wide range of capabilities. In the mobile application testing world, open source tools are readily
available with a varying focus and capability set. Commercial tools are also available but may lag
behind a bit in adding coverage for new capabilities and technologies. Before selecting either type of
tool, due diligence is required to ensure it is the most appropriate tool for the job. It is important to
consider tool support, maintenance, applicability and ability to grow with the industry as well as cost
and usability.

American
Software Testing
Qualifications Board

Version 2015 Page 31 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

4.2 Environments and Protocols

4.2.1 Environment Considerations
A mobile application is expected to work in numerous environments. Each of those environments can
have its own particular features. At a minimum, the following areas need to be considered when test
environments are being selected and established.

4.2.1.1 Connectivity
Devices are able to connect via WiFi, cellular networks and may talk to each other via Bluetooth
technology and various other means. When testing the connectivity, it is important to test for
disruptions in the connection, reconnection capabilities, the ability of the application to continue when
data loss has occurred during the transmission, and lost connections. It must also be verified that the
device can switch between connections without losing data or impacting the user. For example, a
device may switch from WiFi to cellular, or may switch from a slower 3G network to a faster one.
Because devices are mobile, they should be selecting the best connection available. Testing the
various connectivity options requires significant network resources and configuration capabilities.

4.2.1.2 Memory
Device memory varies widely. Tablets, smart phones and other devices come with a range of memory
options. New devices generally start on the market with a lower memory capacity and increase the
capacity as newer models are introduced. Devices on the market may also be able to add more
memory. It is usually a safe assumption that if an application fits within the memory on an existing
device, it will still fit on future versions of that device that have greater capacity. New devices of
course support new features and peripherals which may be competing for memory usage, but that is
no different from the memory competition that will always occur.

Testing for efficient memory usage (efficiency testing) and ability to handle low memory situations
(fault tolerance) is important for mobile applications running in a shared environment with competing
processes. Memory management must be monitored to ensure no memory leakage is occurring due
to allocated memory not being released and that no memory corruption is occurring.

4.2.1.3 Performance
The performance of the test environment is an important consideration for creating valid test results.
The performance of the test environment should mimic the performance of the production
environment, including communication interruptions, reconnections and network traffic. Because
communication is at the core of the performance for mobile applications, the test environment must
provide a realistic communication interface including an ability to introduce and control the problems
that are likely to be encountered in production such as weak connections, timeout errors, and so forth.

4.2.1.4 Device Capabilities and Features
Devices vary considerably in their capabilities and features. While application testing should not
include testing all the capabilities of the device, it is important to understand how the features of the
device may interact or affect the application. For example, if the application requires the use of an
accelerometer and gyroscope to determine the orientation of the device to display the application
interface correctly, testing must include devices with various versions of these features any of which
may have different interfaces, as well as devices without the features or with malfunctioning features.
The more features of the device used by the application, the larger the testing pool of devices
becomes.

Features and capabilities to be considered when determining the proper test environment for the
application include:

• Screen size for display
• Screen lighting
• Geolocation
• Telephony

American
Software Testing
Qualifications Board

Version 2015 Page 32 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

• Accelerometer
• Gyroscope
• Magnetometer

In addition, the capability of a device to install the application over-the-air (OTA) must be considered
when determining how to download releases and updates to the device. The OTA capability may limit
the size of the downloads and the installation routines must have strong recovery for interruptions,
partial downloads and missed updates. An update must not adversely affect the functioning of the
device or result in data loss.

As was mentioned in the techniques section, combinatorial testing techniques such as pairwise testing
can help reduce the potential number of test environments by determining representative
combinations of capabilities and features that do not interact. Decision tables can be used to
determine necessary combinations of capabilities and features that do interact.

4.2.1.5 Data Handling
Another environmental consideration is the data that will be used by the mobile application. In
general, data used by a mobile application can come from one of four sources:

• The backend system (e.g., database servers)
• The device itself (e.g., GPS location)
• The user (via some type of input e.g., text, selections, UI interaction)
• Another connected device (e.g., a PC connected via USB)

Testing for mobile applications must consider receiving data, sending data, and storing data on the
device. Data must be handled with the appropriate level of security and reliability. When data is
stored on the device, special care must be made to ensure the data is safe and protected from
unauthorized use.

4.2.1.6 Device Location
When testing mobile applications, the tester has to consider access to the physical or simulated
device. Since mobile application testing often requires testing across a number of devices, access to
these devices must be determined during the test planning phase. There are a number of ways to
access multiple devices and in some cases, multiple testers on multiple devices. The following list
includes some of the more common approaches to procuring a large number of devices for testing:

• Actual physical devices co-located with the testers
• Open Device Labs [OpenDeviceLab]
• Crowdsourcing (e.g., utest.com)
• Remote device labs (e.g., from the vendor or an external organization)
• Virtual environments (e.g., simulators, emulators and cloud-based)

Acquiring a large set of devices and keeping that set current with new models and versions can be
cost-prohibitive. As a result, using a remote test environment furnished by tool vendors or virtual
environments is often a more feasible approach.

4.2.2 Protocols
Different devices may use different communication protocols. Testing tools, particularly load testing
tools, may not support all protocols. The tester must understand what protocol is used by the devices
to be tested to ensure there are no incompatibilities with the tools that will be used during testing. If
simulators will be used, the simulator must be able to simulate the use of the device’s protocol.

American
Software Testing
Qualifications Board

Version 2015 Page 33 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

4.3 Specific Application-Based Environment Considerations

4.3.1 Browser-based Applications
Browser-based mobile applications are designed to run on a set of supported browsers that run on the
device. Some of these may give the user the option to switch to the mobile version of the application
or stay with the standard web application. One advantage to creating browser-based applications is
the built in portability. Any device that can run a browser should be able to run the application. This
should, in theory, limit the testing requirements to testing with the various supported browsers on any
type of device. There are, however, specific considerations for testing when a browser-based
application is also considered to be a mobile application. For example, different browsers and versions
vary widely in how they handle certain components, java script, and cascading style sheets (CSS).
Some plug-ins may not be available on a mobile device (e.g., Flash).

4.3.1.1 Considerations for Usability and Performance
Because these applications may not have been optimized for a mobile device, there may be issues
with usability and performance. In particular, font sizes, navigation and screen layout may not be
user-friendly when viewed on a smart phone. While many of these applications have an option to
switch to the “mobile” version, that option may not be apparent to the user who is confronted with tiny
fonts and only a portion of the main window.

Performance may also be an issue for an application that was not designed for the mobile
environment. As was discussed in the performance testing section, the tester will still need to test for
performance but should also watch for connectivity issues that might impact reliability and
performance.

4.3.1.2 Browser Version Support
As with any web application, the application must be tested with the supported browser versions.
When the application is also intended to be deployed in the mobile world, additional browser versions
may be required and, more importantly, the frequency of some browsers may differ from the traditional
platforms. For example, the PC environment may see a dominance of one type of browser where
mobile devices may see a different one. When this happens, testing prioritization must shift
proportionally to the more frequently used browsers.

4.3.2 Native Device Applications
An application that is built for a native device is generally using specific features and capabilities of
that device and its operating system to deliver functionality. When this happens, the same application
generally is not portable to another environment. There are a number of reasons for developing native
device applications. In addition to being able to take full advantage of the device capabilities, the
developer is also able to tune the user interface to a more specific market. This approach is also used
for devices that do not have the capability to run a browser or those that must work without Internet
connectivity.

4.3.2.1 Good Simulator or the Real Device
With native device applications, the simulator must be designed specifically for that device. If
simulators are not available, then the testing must occur on the real device. This, of course, may
become costly if the device is difficult to obtain or performance testing is required for a large number of
the devices. The tester should work with the developer to understand what aspects of the application
require the specific device and what could possibly be tested with a generic simulator.

4.3.2.2 Tool Support
Depending on the market popularity of a native device, tool support may not be available, or may not
be available soon enough for the testing of new applications. Tool support will follow the market. In
general, tools will be developed first for the major market players such as iOS, Android and Windows.

American
Software Testing
Qualifications Board

Version 2015 Page 34 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

New devices may not have the tool support needed to procure simulators, conduct performance tests
or to support test automation.

4.3.3 Hybrid Applications
A hybrid application may use specific features and capabilities of a device via plug-ins. Because
device compatibility depends on the framework used to develop the application, testing across
different devices must still be done as the framework may not be defect-free. Generally, all the testing
needed for native applications and for browser-based applications is needed for a hybrid application.

4.4 Real Devices, Simulators, Emulators and the Cloud
Testers, working with developers, must determine the most appropriate test platform. This can be real
devices, simulators of devices, emulators, or a mix of the three.

4.4.1 Real Devices
By definition, real devices are the most realistic, providing the most accurate test environment. Real
devices will provide the production environment and will allow the tester to observe any device specific
issues that might be missed with a simulator. Devices have hundreds of differences between each
other. They also have their own defects [Firtman], such as inconsistent sensitivity to user input (e.g.,
not detecting pressure at the edge of the screen) or physical issues (e.g., buttons that are not reliable
or consistent). Simulators will always lag behind the real devices because it takes time to build and
test quality simulators.

Real devices, although the best test platforms, may be difficult to obtain. It may also be difficult to
create test automation and performance testing that will work with real devices. Generally, it is best to
test with a mix of platforms, using the real devices as a sample set for usability, performance
sampling, and general functional tests. Real devices are often used for comparison against the
simulated devices to ensure the simulators are giving “real” responses.

Usability testing should always be conducted on the real device in order to give a proper and full
assessment of the user experience. Device differences can affect usability and even though the
application is the same, it may have a different usability level on different devices.

Depending on the application and the target platform, it may be possible to test with devices that are
similar in capability to the target. This is sometimes done when new operating system versions are
available or new features are available on new devices, but are not leveraged by the application.

4.4.2 Simulators
A simulator is a program that simulates some aspects of a device. It does not emulate the hardware
itself and may not simulate all the device responses and activities. It does not work on the same
operating system as the device.

Simulators are sometimes supplied by device manufacturers to help developers test applications.
Since a device will be more popular if it has many applications, it is in the best interest of the
manufacturer to supply a simulator, and a good one. However, simulators are not necessarily good or
reliable and may not be a good representation of the real device.

4.4.2.1 Buy or Build
If a reliable simulator is not available, the development organization may choose to write their own.
While this will enable them to create exactly what they need to develop and test the application, the
simulator itself must be tested. Building a simulator is a development project in itself and requires

American
Software Testing
Qualifications Board

Version 2015 Page 35 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

analysis, design, architecture, development, testing and, of course, documentation. Also a simulator
must stay current with changes made to the real device or testing with the simulator becomes invalid.

4.4.2.2 Verify Simulator Reliability
Before relying on the simulator, it is important to ensure that the simulator is giving correct responses
to inputs. This is done by providing the same inputs to the real device and the simulator and verifying
if the results are the same. If not, the simulator is not reliable. This is true for functionality as well as
performance. A slow simulator that is functionally correct (or a fast one) can still be used for functional
testing, but further testing will be needed on a real device to ensure that the response time differences
do not affect the application.

4.4.2.3 Using Simulators for Performance and Load Testing
Simulators are commonly used for load generation and performance evaluation. Because simulators
are software rather than hardware, large numbers can be created and run without additional costs of
procurement. As with any performance testing, the tester should be sure the activities per simulator
are equal to the expected activities per real device in order to create accurate load and performance
reports.

4.4.3 Emulators
Emulators are used to provide the functionality of the device itself including software, hardware and
operating systems. This is necessary for certain applications that may use various device components
such as cameras or special screen controls. Emulators are usually written by device manufacturers
although some are available from other sources. It is difficult to test an emulator for proper functioning
without knowing the internals of the real device. If an emulator is to be used, the tester should ensure
that it is from a reliable source and that it has been thoroughly tested. Spot checking responses
against real device responses is a good idea and will help verify that the version of the emulator being
used corresponds to the target device.

4.4.4 Cloud
There are a number of cloud alternatives for mobile application testing. These include the following:

• Cloud hosted appliances – Appliances or devices exist in the cloud and can be accessed via
manual or automated test. This allows access to many different types of devices. These
devices can be used for functional testing as well as performance and usability testing.

• Cloud hosted agents – Software can run in the cloud that simulates users from all over the
world. This allows a site to verify what happens to its backend when many users of mobile
devices from many types of networks, use the application. This is sometimes done with
device simulators in the cloud and sometimes done with real devices in the cloud.

• Cloud network simulators – When doing testing in the cloud, network simulators can be used
to simulate various network configurations, speeds and error conditions. This allows a
realistic test environment to be created with varying network types.

• Cloud protocol simulators – Since devices may communicate via different protocols, the
protocol simulators are used to simulate those protocols. This allows an organization to test
their application with varying protocols or to do performance testing across multiple protocols.

Any cloud solution for testing must consider the reliability of the cloud environment, the realism of the
environment (which often is determined by the configurability) and the accessibility. In addition, there
are some security concerns with using cloud environments for testing, particularly for new and
innovative applications and devices

4.5 Performance Test Tools and Support
Just as the mobile devices have exploded into the market, so have the tools to support testing them,
particularly for performance. Cloud solutions allow access to a large number of devices, networks and
protocols, allowing load to be developed on a system from a variety of cloud-based devices or device

American
Software Testing
Qualifications Board

Version 2015 Page 36 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

simulators. A good tool is not enough to do effective performance testing though. Performance
testing must be targeted to the operational profiles that matter and the loads that are expected to be
experienced by the system, as discussed in Section 3.3.1.

When selecting a performance testing tool, the tester should consider the tool’s ability to create and
track the following:

• Information flowing between the device and the servers, such as
• Transaction data
• GPS information
• Images

• Volume and frequency
• Connection/disconnection patterns
• Activity bursts

• Usage patterns
• Variances for time of day/week
• Uses for business devices versus personal devices
• Peak usage times (e.g., daily, seasonal)

The ability of the tool to control and monitor this information is critical to the success of the
performance testing effort. Testing with the wrong tool can result in wasted time or, worse, incorrect
results.

There are many good commercial tools available for performance testing. Some of the traditional
tools are adding support for mobile devices. New, targeted mobile performance testing tools are
entering the market frequently. When making a tool decision, it is important to remember to assess
the capabilities needed today and tomorrow. It is a good practice to plan for success and assume the
application’s user base will grow dramatically, much faster than with traditional software.

4.6 Test Automation
Test automation is not optional in mobile application testing; it is a requirement. As more tools are
joining the market, test automation is feasible and maintainable only if well designed and planned.
Mobile application test automation projects must be sure to consider the following:

• Base the tests on realistic usage patterns
• Understand and test the interactions between the user and the device
• Understand and test the interactions between the device and the servers
• Isolate the data from the test automation script by using data-driven or keyword-driven

approaches [ISTQB_FL_SYL]
• Ability to control the real device
• Develop for maintainability
• Version control the test cases so that older versions of the test automation are available to

check a maintenance release

Test automation is vital for mobile application testing and requires good planning, solid design and
careful implementation. Maintainability must be designed into the test automation code and good
practices such as isolating the data will help ensure maintainability. Because mobile applications
change so rapidly, maintainability is an even higher priority in mobile application test automation than
it is for traditional applications. Test automation can be as valuable as the software it is testing.
Version control, good coding practices, and quality requirements apply to the test automation code.
Ideally, test automation is built as the application is built, enabling automated testing of the
continuously integrated and deployed application.

American
Software Testing
Qualifications Board

Version 2015 Page 37 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

Test automation with real devices is difficult. Test automation with simulators (or emulators) is the
more common approach and requires that simulators be built to support automation by providing the
proper interfaces to allow the automation to communicate with the simulator. Since a simulator may
not have buttons to push or a screen to touch, it needs to provide a capability for the test automation
to send commands that would accomplish the same result as a user interacting with a real device.
There are tools on the market that drive automated tests to actual devices, but the cost may be a
factor for smaller development organizations and using simulators may be the more practical solution.

4.6.1 Tool Support
As with performance testing tools, test automation tools for mobile applications are also rapidly
entering the market. Careful tool evaluation is required, but it makes sense to look to the new tools
with more finely tuned abilities for mobile applications rather than some of the traditional test
automation tools that adapt more slowly to the new markets. Because mobile devices and their
applications will continue to evolve rapidly, any test automation tools must be able to adapt as well.
Test automation is a significant investment and buying the wrong tool can be a costly mistake.

4.6.1.1 Pick the Environment
Tightly coupled with the proper tool selection is the proper environment selection. Test automation
must be targeted to an environment. That environment may include:

• Real devices
• Simulated devices
• Cloud hosted devices or user agents
• Combination of any of the above

Focusing the test automation on the target environment will help the tool selection process and will
help ensure that the tool will be able to support the testing as the testing environments expand. Even
if a cloud solution is not appropriate for the organization today, it may become necessary at a later
date. Since test automation should be designed to last for several years, those types of environment
changes must be considered early.

4.6.1.2 Support for Coordination
It may be necessary for a tool to be able to support transactions being sent to and received from
multiple devices and simulators. The tool may need the ability to correlate this information, particularly
for server tests, to understand what is happening on the system at the time the test automation is
being executed. This coordination may include:

• Number of transactions
• Timing of transactions
• Types of transactions
• Summarized reporting

Tools that are not capable of managing this coordination will cause the test team to spend
considerable manual effort to set up tests and analyze results.

4.6.2 Skills Needed
As with any test automation project, programming and scripting skills are needed to develop high
quality, maintainable test scripts. It can be misleading to think that a mobile application will have a
short life in production before being upgraded and therefore the test automation code will only have a
short life as well. Good test automation can grow with the product and can provide good regression
testing for the old features when new features are introduced. In order for this to happen, the test
automation architecture must be robust – built to last and grow.

In the mobile application world, the capability sets will continue to grow. Automation will not be stable
– it will always be expanding to accommodate new features of the device and the applications. Tools
may lag behind device development. It is a reasonable expectation that programming or scripting will

American
Software Testing
Qualifications Board

Version 2015 Page 38 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

be required to bridge the gaps between tool capabilities and device capabilities. Before coding to fill a
gap, the tester should check if a reliable tool is available. Tools are developed and deployed very
quickly, so frequent investigation is warranted to avoid unnecessary effort.

American
Software Testing
Qualifications Board

Version 2015 Page 39 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

5 Future-Proofing – 135 mins.

Keywords
none

Learning Objectives for Future-Proofing

5.1 Expect Rapid Growth
MOB-5.1.1 (K1) Recall ways in which the mobile application and device market will expand
MOB-5.1.2 (K1) Recall areas in which user expectations will increase

5.2 Build for Change
MOB-5.2.1 (K2) Summarize the considerations for building a flexible testing framework
MOB-5.2.2 (K4) Analyze a given mobile testing project and determine the appropriate activities to

reduce maintenance costs while enabling wide product adoption

5.3 Plan for the Future
MOB-5.3.1 (K2) Explain how lifecycle models are likely to change and how this will affect testing

5.4 Anticipating the Future
MOB-5.4.1 (K1) Recall the ways in which testers will need to adapt

5.1 Expect Rapid Growth
If the past is any indication, the mobile application and device market will continue to expand. This
means there will be more types of devices and variations of existing devices. The devices will have
more capabilities. There will be more applications and those applications will continue to become
more feature rich to take advantage of device capabilities and increased memory.

But that’s not the only areas for growth. The number of users, the variety of users and the expected
usage of these devices will also grow. As the devices become more and more a part of personal and
business life, user expectations will continue to increase in the following areas:

• High reliability
• Excellent usability
• High performance
• Consistent experience
• Portability
• Fast turnaround for fixes and new features

As a result of these ever-increasing expectations, software testers will need to become more adept at
defining and executing the necessary tests while also facilitating a rapid time to market. This will
require leveraging the right tools, picking the appropriate environments and using new approaches to
deal with the large number of devices and user types.

5.2 Build for Change
As profit margins decrease due to competition in the market, pressure will be put on the development
and testing teams to produce high quality, maintainable products quickly. Testing will need to engage

American
Software Testing
Qualifications Board

Version 2015 Page 40 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

early with development to plan out the testing, procure the tools and environments, and upskill as
needed.

5.2.1 Architect the Testing
It will not be enough for the developers to plan for change. The test approach must also be
architected for change. Some of the considerations for this flexible framework include:

• Implementing or utilizing test environments that can be quickly assembled and disassembled
• Utilizing the most appropriate tools for the tasks
• Implementing maintainable test automation (e.g., keyword-driven)
• Designing the load testing approach at the beginning of a project
• Conducting load testing throughout the software development lifecycle
• Maintaining a reasonable set of representative devices
• Accommodating a risk-based testing approach
• Providing a framework to support crowd-sourcing
• Providing a strong ROI that supports the shorter lifecycle

Tools must be selected for flexibility and ability to adapt to the changing market. Tool vendors must
be highly responsive to the market changes. Relying on past reputation will not be sufficient in a
market that is moving quickly and has many tool options.

While re-usability is always a goal, in the short lifecycles of the mobile applications, achieving time to
market with a quality product may supersede the value of having a fully reusable testing solution. Re-
usability will likely save money in the long run, but too much time spent creating a fully re-usable
testing solution may result in an unacceptable delay in product release. Investments must be justified
by the expected lifetime of the product. Today’s best smart phone is likely to be tomorrow’s
paperweight, so the investment in the testing must be justified.

5.2.2 Enable Efficient Maintenance
While maintainability may not be the ultimate goal, efficient maintainability is a requirement. The test
environments, tools, and testware must be able to be efficiently maintained or replaced. It may be that
an environment is needed for an initial release of an application but will not be needed for the next
release. This means the investment in the environment must be justified by the risk mitigation that is
expected to be achieved from testing in that environment. Unlike traditional software where longer
term planning is justified, mobile application software may have a much shorter lifecycle so the
maintenance of the test environment and the need for reuse may also be similarly limited.

5.2.3 Select Tools for Flexibility
If tool vendors cannot be responsive to the market, purchasing their tools and creating significant test
assets with those tools would be foolish. The tools must be as flexible as the products will be and any
investment in test automation or even test management must conform to the expected lifecycle of the
product. Inexpensive tools that can be used to create less resilient test automation may be justified
over heavier weight tools that will create a product that will provide long term maintainability,
particularly if the product is not planned to be used long term.

When designing testware, it may make sense to design it to work with a simulator rather than a
particular device. This may offer more flexibility in the long run as devices evolve and add more
features. Developing to a simulator will also allow test execution prior to the availability of the real
device.

5.2.4 Select Partners Carefully
When third party relationships are formed for testing, these relationships should be built on the
assumption that there will be many releases. Long term relationships will allow more flexibility in

American
Software Testing
Qualifications Board

Version 2015 Page 41 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

meeting market needs without incurring downtime due to contract negotiations, requirements debates
and so forth. If a third party relationship will be formed, it is important to ensure that the partner will be
able to keep up with the changes in the industry. Expect a demonstration of flexibility and ability to
adapt to changing markets. A partner that is locked into a particular tool set or a particular
methodology may not provide the agility needed to cope with the rapidly changing market.

These relationships may include outsource testing, device labs, cloud environment vendors and so
forth. Because building a full mobile application test capability may be cost prohibitive, partnerships
may be the most viable way to meet variable needs.

5.3 Plan for the Future

5.3.1 Lifecycle Models
It is likely that new lifecycle models may be introduced as a result of the mobile application and device
requirements for testing. Agile and iterative lifecycles already dominate the industry, but new leaner
methodologies may become popular. The tester must remember that any lifecycle model will require
some adaptation and the tester must understand the moment of involvement and level of involvement
that will be expected in the various models.

Timescales for the development and testing of applications have never been so short. The market
demand has never been so high. Of course, the opportunities are plentiful. But, an organization’s
reputation can be badly damaged by poor quality products and ill-considered feature sets. The tester
must expect to work with the developers to ensure the best possible product is being released within
the given timeframe.

5.3.2 Alternative Testing
While new lifecycle models may be on the horizon, there will still be a need for efficient testing. This
means taking a lightweight approach to deliver a proper ROI. Automation and performance testing will
be required and the tools must be appropriate to the needs, schedules and budgets. Security will
always be a consideration and security testing tools will likely adapt to fill the mobile market as well.

Testing in the cloud is likely to become a commonplace practice where device simulators and user
simulators are used to create and test a realistic variety of transactions and system load. Crowd-
sourcing, testing-in-the-wild, and other forms of outsourcing are likely to continue to grow and will
continue to present test management challenges.

As the tester community expands to non-testers, automated error reporting and screen capture will
become more commonplace to help developers track and diagnose issues that occur in production.
This information should also be fed back through the testing process to ensure improvements are
made to close any testing gaps.

5.4 Anticipating the Future
Planning testing practices, processes, and tools for use two to three years in advance is difficult in the
mobile application space. New applications and devices emerge daily and competition will continue to
drive the market and lifecycle.

Testers need to be ready and willing to adopt new technologies, investigate new tools and learn more
efficient and leaner testing methodologies. Some products and practices will be unsuccessful but
good research should allow testers to select the right approaches and the best tools.

American
Software Testing
Qualifications Board

Version 2015 Page 42 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

6 References

6.1 ISTQB Documents
• [ISTQB_ATA_SYL] ISTQB Advanced Test Analyst Syllabus
• [ISTQB_FL_OVIEW] ISTQB Foundation Level Overview
• [ISTQB_FL_SYL] ISTQB Foundation Level Syllabus
• [ISTQB_GLOSSARY] Standard glossary of terms used in Software Testing

6.2 Trademarks
The following registered trademarks and service marks are used in this document:

• ASTQB® is a registered trademark of the American Software Testing Qualifications Board
• ISTQB® is a registered trademark of the International Software Testing Qualifications Board
• PRISMA® is a registered trademark of Erik van Veenendahl
• Teststorming™ is a trademark of Rice Consulting Services, Inc. and is used by permission,

with permission granted to freely use Teststorming in the creation of courses and other
derivative works with attribution to Rice Consulting Services, Inc.

6.3 Books
 [Black09]: Rex Black, “Managing the Testing Process”, John Wiley and Sons, 2009,

ISBN 978-0-470-40415-7
 [Firtman]: Maximiliano Firtman, “Programming the Mobile Web”, O'Reilly Media; Second Edition

edition (April 8, 2013), ISBN-10: 1449334970
 [vanVeenendaal12]: Erik van Veenendaal, “Practical risk-based testing – The PRISMA approach”,

UTN Publishers, The Netherlands, ISBN 9789490986070
[Whittaker]: James Whittaker, Jason Arbon, Jeff Carollo, “How Google Tests Software”, Addison-

Wesley Professional; 1 edition (April 2, 2012), ISBN-10: 0321803027

6.4 Other References
The following references point to information available on the Internet. Even though these references
were checked at the time of publication of this syllabus, the ASTQB cannot be held responsible if the
references are not available anymore. The ASTQB is not endorsing any of these sites or their
products. The references are provided as a source of information only.

[InfoQ] http://www.infoq.com/news/2014/10/world-quality-report

[Paskal] www.gregpaskal.com

[OpenDeviceLab] www.opendevicelab.com

[OWASP] https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Top_Ten_Mobile_Risks

American
Software Testing
Qualifications Board

Version 2015 Page 43 of 43 15 Sep 2015

© American Software Testing Qualifications Board

American Software Testing
Qualifications Board

Mobile Tester
Syllabus

[Nielsen] Jakob Nielsen, “Why you only need to test with 5 testers”, www.useit.com

[Rice] “Teststorming”. http://www.riceconsulting.com/home/index.php/General-Testing-
Articles/teststorming-a-collaborative-approach-to-software-test-design.html

[Samsung] https://developer.samsung.com/remotetestlab

[Webtrends] http://www.webtrends.com/blog/2010/04/top-metrics-for-mobile-apps-measure-what-
matters/

