
Test Automation: Implementation
Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Automation - Implementation Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Automation - Implementation
3	 Overview
5	 Designing and obtaining test data
6	 Environment requirements
10	 Stubbing, Mocks, and Service Virtualization
11	 Using Grids and Agents
12	 Selecting the right thing to automate - ROI, feasibility
13	 Selecting the Right Time to Automate Tests
15	 Understanding the Risk of Decisions
16	 Configuration Management (CM)
18	 Designing for Maintainability
21	 Documentation for Maintenance in the Future
22	 Architecting Test Automation for Maintainability
23	 Good Automated Scripting Practices

Test Automation - Implementation Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

Overview

In this syllabus, we discuss the techniques and methods for
implementing test automation.

Test Automation - Implementation Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST AUTOMATION: TOOLS & SOLUTIONS

Designing and obtaining test data
Explain the required contents of test data

Environment requirements
Provide examples of key attributes of a good
test automation environment

Stubbing, Mocks, and Service Virtualization
Explain the purpose of using stubs, mocks, and
service virtualization

Using grids and agents
Explain the purpose of using grids and agents
during test automation execution

Selecting the right thing to automate -
ROI, feasibility
Summarize the characteristics of items that
should be automated first

Selecting the Right Time to Automate Tests
Summarize the considerations for the timing of
test automation implementation

Understanding the Risk of Decisions
Summarize the significant risk items to be con-
sidered when making test automation deci-
sions

Configuration Management (CM)
Explain how configuration management of test
automation assets can be implemented

Designing for Maintainability
Summarize techniques that can be used to im-
prove maintainability

Documentation for Maintenance in the Future
Explain the importance of documentation in
test automation

Architecting Test Automation for Maintain-
ability
Explain the concept of keyword-driven testing

Good Automated Scripting Practices
Summarize the concepts of good scripting
practices

Test Automation - Implementation Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Designing & Obtaining Test Data
Repeatable and reliable test automation depends
on having a source of test data that the test
automation tool can read and process. This test
data must contain the conditions needed to
perform the automated tests and the expected
results needed to verify the results. Ideally, this
data is controlled in an automated manner, which
allows it to be created, modified, and restored as
needed.

These tasks can become complex when dealing
with time-sensitive or interrelated data, as these
data require frequent updates to stay current with
processing dates.

Test data can be obtained by the following
methods:

	 Extraction from external sources, such as
databases and existing files

Created by the use of test data generation tools

Manipulation of existing data, such as changing
dates

Regardless of the method used, it is imperative
that internal consistency be maintained.

Test Automation - Implementation Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Environment Requirements
Before test automation tools can be implemented,
a suitable test environment must first be designed
and implemented. The test environment will
depend on several key factors:

•	 Technology to be tested, such as mobile, web,
or cloud

•	 Technology to support the planned tool(s)
•	 The size of the environment in terms of storage

capacity to handle test data and test tools with
their assets

•	 The processing speed needed for tests to run
efficiently

The following are key attributes of a good test
automation environment:

Stability
The test automation environment must be stable
enough to accomplish the execution of many tests
in a repeatable and reliable way. The environment
should not be subject to frequent crashes and
unexpected restarts and error conditions.

An important task in test automation is test
environment maintenance. Part of maintenance is
periodically restarting the system(s) that host the
test automation. This also includes periodic clean-
up of unneeded files (such as old screenshots and
logs) and restart of the tool(s) to clear memory.
These are typically manual tasks.

However, it may be possible to automate restarts,
initiate tests, and perform maintenance tasks
using CRON jobs (Mac OS and Linux) . (Fig 1) To
automate tasks in Windows, there is software
available to do this, such as VisualCron.

Test Automation - Implementation Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Figure 1 – Sample CRON Job in Mac OS

Integrations
Test tools must be able to integrate with other tools and other components involved in testing. For example,
a test automation tool may integrate with a test management tool for test execution and reporting. Another
example is the integration needed between test data generation tools and test execution tools. (Fig 2)

Figure 2 – Integration with Other Tools

Test Automation - Implementation Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Suitable data available
(anonymization)
A major concern in test data is that of maintaining
privacy while still achieving realistic test data.
There are two common strategies for this.

Create contrived test data that includes all the
needed test conditions. The contrived nature of
the data eliminates the need to make the data
anonymous.

Create a set data derived from actual data
supplemented with the needed test conditions.
In this case, private data needs to obfuscated in
some way. There are a few common methods for
this, all facilitated by test data tools or by special
scripting that can accomplish this task. These
methods include:

•	 Masking – Simply replacing the actual data with
“X” or similar

•	 Scrambling – Rearranging the values in a data
field. For example, a phone number like 405-
927-6677 becomes 405-967-2777.

•	 Replacement - Substituting the values in a data
field. For example, a phone number like 405-
927-6677 becomes 405-816-5566.

Support for devices (cloud,
simulators, emulators)
The test automation environment must be able
to support all devices, including virtual devices
such as simulators and emulators. If cloud-based
platforms and devices are being tested, the need
for support extends to those as well.

Maintaining device support and compatibility can
be a significant challenge as the devices under test
often require updates, some of which may require
major updates to the test environment, such as
operating system upgrades.

Tool support and
compatibility
As tools go through upgrades and changes, so
must the test environment. This includes both
commercial and open source tools. It should also
be noted that tool upgrades can break existing test
automation assets.

Test Automation - Implementation Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

In some cases, depending on the extent of tool
changes (such as major version releases), entire
test automation libraries may be subject to
changes in response to tool updates.

Representative of production
environment (scaled for data,
horsepower)
Ideally, the test automation environment should
have the same technology and profiles of the
actual production environment. The test data
may be different to protect privacy and also
include needed test cases, but the closer the test
environment is to the actual environment, the
better.

If performance testing is part of the test
automation scope, then careful consideration
must be given to the components that impact
performance, such as database size, network
bandwidth, and hardware processor speed and
memory.

Controllable
The automated test environment must be
controllable to ensure reliable and repeatable
results and the correct association with releases
or versions to be tested. For an environment to be
controllable, you must be able to do the following:

•	 Create
•	 Configure
•	 Restore
•	 Teardown

To be sustainable, these capabilities should be
automated.

Test Automation - Implementation Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

Stubbing, Mocks, and Service Virtualization
It is not uncommon for some items to be
unavailable for testing. For example, a component
might not yet be developed.

In these cases, the unavailable components may
need to be in the form of a stub or mock object.
These stubs and mocks can provide a placeholder
for the future actual components to allow the
larger test to be automated. The output from a
stub or mock object is contrived so that the test
automation run can be completed. At a future date,
the actual components can be used (Fig 3).

 	 Figure 3 – Stubbed Components

Service virtualization is another way to test
services. A service or microservice is simply small
functionality that is accessed, typically through the
cloud.

Test Automation - Implementation Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Using grids and agents
Grids are used to distribute processing during test
automation run across multiple computers. The
processing is often performed by agents residing
on each computer in the grid and controlled by a
central controller or server. (Fig 4)

Figure 4 – Test Automation Grid

The benefits of using a grid are to:

•	 Reduce overall test automation run time by
distributing the tests across multiple computers
simultaneously

•	 Have a variety of test environment
configurations

Test Automation - Implementation Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Selecting the right thing to automate -
ROI, feasibility
An important question to ask and answer is “What
do we automate first?” A good place to start in
test automation development is with those tests
that are very repetitive and simple. Achieving early
success in test automation can show quick return
on investment (ROI) and

Starting test automation with large and complex
tests can be frustrating and time-consuming. Such
tests can give the impression that test automation
is too difficult.

It is also important to understand that not every
feature can or should be automated. There are
some tests that require such a high degree of
human interaction and evaluation that it is best to
perform those tests manually. Automating simple
and repetitive tests can provide the leverage
to perform more time-consuming and creative
manual testing.

Test Automation - Implementation Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Selecting the Right Time to Automate Tests
Just as important as choosing the right tests to
automate tests is choosing the right time to start
automating tests. Much of this has to do with
test automation readiness which includes people,
processes and technology.

Building into the CI/CD
Pipeline
The entire concept of Continuous Integration
(CI) and Continuous Delivery (CD) is based on
the ability to automate tests during the build
and delivery process. It is certainly possible to
automate testing in the absence of CI and CD.
However, if CI and CD are part of the development
and delivery process, then test automation should
support them.

CI and CD tests are not intended to be robust tests.
That would be impractical as it takes more time
to develop test automation scripts or other assets

than is available in a typical development, test and
release cycle. Instead, CI and CD tests are intended
to test the stability of a build by testing basic
functionality at a smoke test or sanity test level.

Achieving Cost-effectiveness
by Stubbing
To achieve reasonable cost effectiveness in test
automation, some parts of the test may need to
be simulated or “stubbed” to allow a larger feature
or workflow to be automated more quickly as
described in 2.3. (Fig 3)

Readiness for End-to-end
Test Automation
While test automation scripts can focus on small
features, at some point the greater value is seen in
automating tests of a full workflow process or task

Test Automation - Implementation Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

from start to finish. (Fig. 5) This is known as “end-to-end” testing. End-to-end testing follows a workflow
or task sequence and encompasses as many of the functions in the workflow as possible. Functions can be
further decomposed into sub-functions (Fig 5) . Each block in the workflow represents a function that can
be tested by automation. Some functions in Figure 5, such as “Fulfillment”, require some degree of human
performance.

Figure 5 – Example End-to-end Test Workflow

Test Automation - Implementation Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

Figure 6 – Decomposition of Workflows

The ability to perform end-to-end test automation
often depends on the ability to have test
environments that span technologies. For example,
a test might start with a new user setting up an
account in a mobile app and placing an order. To
achieve an end-to-end test, the order might need
to be processed and fulfilled by another system in
a totally different technological and operational
environment.

Modular scripting as described in 2.9.1 can be very
helpful in automating end-to-end workflows, as
each modular script can be reused and combined
in a variety of ways with the need to create new
test scripts.

Cost of Automating Too Early
It tempting to start creating test automation as
early as possible. However, one must consider the
degree of change likely to occur early in feature
development.

Test automation maintenance can be very time-
consuming and labor-intensive, and therefore,
costly. While maintenance can’t be avoided
entirely, it does help to wait until the features have
stabilized before starting to automate them.

Test Automation - Implementation Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Understanding the Risk of Decisions
Decisions in test automation carry risk. The key is
to get the best information possible and validate
feasibility by performing proof-of-concepts (POCs)
and pilot projects before committing too much time
and money in a particular too or approach.

Common decisions that carry significant risk are:

•	 Which tool to acquire
•	 When to start automation efforts
•	 Where to start automation efforts
•	 How to deploy test automation to the larger

organization

Test Automation - Implementation Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Configuration Management (CM)
It is extremely important to verify that the correct
versions of applications, data, test scripts, and
any other version-based test environment items
(databases, operating systems, simulators and so
forth) are in place to ensure valid results are seen
in test execution.

CM can be maintained manually, however, the
most practical and reliable means of maintenance
is through the use of tools. This is especially true
when maintaining test scripts and other assets
that change on a frequent basis. These assets
should be treated like code and should reside
in a central repository where changes can be
committed. Branches can be created for making
changes and testing them before merging into the
main trunk (Fig 7).

Figure 7 – Code Branch for Test Automation

Tools such as Bitbucket and Git can be very
helpful in this process. Backups should be taken
on a frequent basis in case the repository gets
corrupted in some way.

Test Automation - Implementation Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

Designing for Maintainability
Maintenance of test automation assets can be
reduced significantly by how test automation
is designed. Approaches such as modular
scripting, data-driven testing and keyword-driven
testing are effective and proven ways to reduce
maintenance.

Modular Scripting
The problem with linear test scripts that are just
a line by line set of execution instructions, is that
they tend to become long and redundant. Consider
the situation where you may be testing the same
function multiple times with varying order of
execution and test data.

One example might be in automating a workflow
where a customer is added to the database,
their information is changed in some way, then
eventually the customer is deleted or deactivated.
These functions could be expressed in one script
(Fig 8).

Figure 8 – Single Script with Multiple Functions

However, if we break the long linear script into
three smaller scripts (add, change, and delete), we
can treat them as building blocks to achieve many
tests (Fig 9). The greatest advantage is if we need
to change the “Add” script or others (“Change”,
“Delete”, and similar.), we only need to change
one script as opposed to many scripts which each
perform the “Add” function.

Test Automation - Implementation Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Fig 9 – Modular Scripts Combined in Different Ways

Sometimes, modularity is achieved by using
macros called from a script (Fig 10). It is not
uncommon for macros (or modules) to call other
macros or modules (Fig 11). These examples are in
pseudocode.

Fig 10 – Sample Script Using Macros

Fig 11 – A Macro Calling Another Macro

Test Automation - Implementation Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

One important thing to remember is that when
modular scripting is used, there must be a uniform
start and stop point for each modular script. That
way, when each modular script is invoked, the
correct starting and ending points are consistent.
For example, a login script could always end on the
first page seen after login.

Data-Driven Testing
A good practice in both manual and automated
testing is to separate data from actions. If data
remains in the scripts, then you need a different
script for each instance of test data. In many
cases, this would lead to hundreds or thousands
of scripts, which is infeasible to execute and
maintain.

When data is stored outside of the test script, then
only one script is needed per function. Each time a
test is completed for one instance of test data, the
next instance is input to the script and the cycle
repeats until all the test data has been processed
(Fig 12). This is the essence of data-driven testing.

Fig 12 – Data-Driven Testing

Test Automation - Implementation Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Documentation for Maintenance in the Future
Documentation is often skipped or neglected
because it takes additional time and effort. People
sometimes think that documentation is a non-
productive activity, but just the opposite is true – it
increases productivity by saving time that would
be spent in trying to re-create test automation
assets and environments.

Documentation is not just for the people who
initially create test automation, but for those
people in the future who will be maintaining and
extending it.

Items to document in test automation include:

•	 Test environment setup and maintenance
•	 How to troubleshoot issues
•	 Test script creation and maintenance

Documentation should not only reside in a central
location such as a wiki or tool, but also in the
automation itself, such as comments in a test
script.

Test Automation - Implementation Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Architecting Test Automation for Maintainability
Test automation architecture has to do with
large concepts which allow test automation to
incorporate frameworks such as keyword-driven
testing. The right test architecture allows people
to more easily interact with the test tools and also
facilitates maintenance.

Keyword-Driven Testing
One of the most popular test automation
architectures is that of keyword-driven testing.
Keyword-driven testing is based on the concept
of building a test framework that allows tests to
be invoked when a particular keyword or “action
word” (such as login, search, and so forth) are
encountered in a main script, sometime known as
a “driver script.” Keyword-driven testing often uses
data-driven testing to feed test data to the driver
script. (Fig 13)

Figure 13 – Keyword-Driven Test Architecture

The benefits of the keyword-driven approach are:

•	 Easier maintenance because tests are modular
and reused

•	 The ability to scale tests because the modular
scripts are data-driven

•	 Higher engagement and adoption by non-
technical testers since a test engineer is
typically responsible for the creation and
maintenance of the framework. Testers can
contribute test conditions and data into the
framework through a user interface or other
means, such as a spreadsheet file, csv file and
so forth.

Test Automation - Implementation Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

Good Automated Scripting Practices
When creating automated test scripts, it is good to
follow practices that enhance maintainability and
readability.

Clear Comments
Comments are most helpful when they explain the
things that are not obvious. For example, why was
a particular approach taken. Another example is to
provide guidance:

“If the following command fails, check the location
settings on the device. They should be set to ….”

Simplicity
Simple and shorter scripts are best because they
are easier to understand and maintain. In addition,
simple scripts often run faster than longer and
more complex scripts.

Modularity
Modularity helps achieve other things such as
data-driven testing and keyword-driven testing.
It also helps to isolate functionality which reduces
maintenance.

Debugging Features
It is helpful to include screenshots, log comments
and similar things to help find problems when a
script fails.

Reliable Locators
A pre-requisite for test automation is to have a
way to locate and interact with objects. There
are good options, such as object ID, name, and
so forth. The problem is that software developers
don’t define these attributes in meaningful and
stable ways.

Test Automation - Implementation Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

Use the most reliable object locators possible. Try
to find a locator that is less likely to change, such
as name, id, class, and so forth.

XPath and x/y coordinates will often work for
a short time can be fragile and lead to more
maintenance. Only resort to these kinds of locators
when none others are available.

It is good to communicate the need to reliable
locators to the developers. They may actually have
the same need.

GOOD PRACTICE IN DEFINING
RELIABLE XPATH

With all due warning about the inconsistency of
XPath, sometimes it may be the only option. At
that point, how the XPath is coded in the test script
has a lot to do with the stability of the script.

Things to do if Xpath is used as a locator:

Use Relative XPath: Start from a known, stable
ancestor element rather than the absolute root
of the document. This makes your tests far less
brittle.

•	 Example: //div[@id=’my-section’]//button[@
type=’submit’] (finds a submit button within a
div with id “my-section”)

Unique Attributes: Leverage attributes like id,
name, class (if unique), type, or custom data
attributes to pinpoint elements.

•	 Example: //input[@type=’email’ and @
name=’emailAddress’]

Text-Based Locators (Use with Caution): If an
element’s text is reliably static, you can use
contains() or text(). However, these can be fragile if
the text changes.

•	 Example: //a[contains(text(),’Product Details’)]

Test Automation - Implementation Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

Things to Avoid in XPath:

Absolute XPath: These start from the root (/html/...)
and are extremely brittle. Any change in the page
structure breaks them. Unfortunately, copying and
pasting the absolute XPath is easy, which is why
so much automation breaks.

Index-Based XPath: Relying on element position
(e.g., //div[3]/p[2]) is risky, as the order of elements
can easily change.

Overly Complex XPath: Keep your XPath
expressions as simple and readable as possible.
Complex ones are hard to debug and maintain.

Some other helpful XPath tips:

Test Your XPath: Use your browser’s developer
tools (usually opened with F12) to test your XPath
expressions in the console. This helps ensure
they’re targeting the correct element.

Add Comments: For complex XPath locators, add
comments explaining their logic. This greatly aids
maintainability.

Have a Locator Strategy: Have a clear strategy for
prioritizing locators such as (ID > Name > CSS >
Relative XPath > other).

PAGE OBJECT MODELS

The Page Object Model (POM) is a design pattern
widely used in test automation to enhance test
maintainability, readability, and reusability. It
promotes the separation of test logic from page-
specific elements and interactions. By adhering
to the Page Object Model, you create a more
robust, maintainable, and scalable test automation
framework.

For each web page in your application under test,
you create a corresponding “Page Object” class.
This class encapsulates:

•	 Elements (Locators): The locators (e.g., XPath,
CSS selectors, IDs) are used to identify web
elements on the page (buttons, text fields, links,
etc.).

•	 Actions/Methods: Methods that represent the
actions a user can perform on the page (e.g.,
clicking a button, entering text, selecting an
option from a dropdown).

Test Automation - Implementation Micro-Credential Syllabus 26Copyright AT*SQA,
All Rights Reserved

Benefits of POM:

•	 Improved Maintainability: If the UI changes (e.g.,
an element’s ID is modified), you only need to
update the locator in the Page Object class, not
in every test case that uses it.

•	 Increased Reusability: Page objects can be
reused across multiple test cases, reducing
code duplication.

•	 Enhanced Readability: Test cases become more
concise and easier to understand because they
interact with page objects through descriptive
methods (e.g., login_page.enter_username())
rather than directly with element locators.

•	 Better Code Organization: Separating page
logic from test logic improves the overall
structure of your test framework.

•	 Abstraction: Hides the underlying
implementation details of interacting with web
elements from the test cases.

Key Principles:

•	 One Class per Page: Each web page should
have its own dedicated Page Object class.

•	 Public Methods for Page Actions: The Page
Object class should provide public methods that
represent the actions a user can perform on the
page.

•	 Private Locators: Element locators should
generally be private within the Page Object
class to encapsulate the page’s structure.

•	 Return Page Objects (For Navigation): When
a page action results in navigation to another
page, the method should return an instance of
the corresponding Page Object. This enables
method chaining. Method chaining, in this
context, is a technique that makes your test
code more concise and readable by allowing
you to call multiple methods on an object in a
single line of code. It’s also sometimes referred
to as a “fluent interface.”

Test Automation - Implementation Micro-Credential Syllabus 27Copyright AT*SQA,
All Rights Reserved

USING CSS

CSS stands for Cascading Style Sheets. It’s
a stylesheet language used to describe the
presentation of a document written in HTML or
XML (including various XML dialects like SVG or
XHTML). In simpler terms, CSS controls how web
pages look.

In addition to formatting, CSS can also describe
structure. When other means of locators don’t
work, CSS can be an option to try. However, CSS
may be fragile at times.

Consider this example:

<div id=”product-list”>

 <div class=”product”>

 <h2 class=”product-title”>Awesome Widget</h2>

 <button class=”add-to-cart” data-product-id=”123”>Add
to Cart</button>

 </div>

</div>

Here are some CSS selector examples:

•	 #product-list .product .product-title (this selects
the product title)

•	 button.add-to-cart (this selects the “Add to
Cart” button)

•	 [data-product-id=”123”] (this selects the
element with the specified data attribute)

OBJECT IDS

Object IDs are the most reliable way to specify
a locator IF they are stable (not changed for the
convenience of the developer(s). This also means
that an object ID can’t be dynamic to be used
as a locator. The object ID must be unique and
consistent, and hopefully, meaningful. For example,
a user name field name might be “user_name”.

Test Automation - Implementation Micro-Credential Syllabus 28Copyright AT*SQA,
All Rights Reserved

Consider the following example:

<form id=”loginForm”>

 <label for=”usernameInput”>Username:</label>

 <input type=”text” id=”usernameInput”
name=”username”>

 <label for=”passwordInput”>Password:</label>

 <input type=”password” id=”passwordInput”
name=”password”>

 <button type=”submit”
id=”submitButton”>Login</button>

 <div id=”errorMessage”></div>

</form>

In this example, the IDs are well-chosen due to the
following:

•	 loginForm: Identifies the form itself.
•	 usernameInput and passwordInput: Clearly

indicate the input fields.
•	 submitButton: Identifies the submit button.
•	 errorMessage: A container for error messages.

Test Automation - Implementation Micro-Credential Syllabus 29Copyright AT*SQA,
All Rights Reserved

www.atsqa.org

