
Test Automation Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Automation Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Automation
5 Introduction
6 Selecting Test Automation Candidates
9 Building Maintainable Test Automation Software
11 Benefits of Automated Testing
13 Test Automation Risks
14 Test Automation Success Factors
17 Test Automation Tools

References
18 ISO/IEC/IEEE Standards
18 Trademarks
18 Books
19 Other References

Test Automation Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information
STUDY TIME – 200 MINS.

KEYWORDS

automation engineer, data-driven, emulators, keyword-driven,
simulators, test automation framework, testware

Test Automation Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST AUTOMATION
Introduction

Selecting Test Automation Candidates
(K1) Recall how ROI for test automation is determined
(K2) Explain the factors to be considered when determining if a project is well suited for test auto-
mation

Building Maintainable Test Automation Software
(K2) Explain the differences between data-driven and keyword- driven test automation
(K2) Understand the purpose of a test automation framework
(K1) Recall why test automation must be updated

Benefits of Automated Testing
(K1) Recall why test automation can increase test coverage
(K2) Describe the benefits of test automation
(K1) Recall how test automation can reduce costs

Test Automation Risks
(K2) Explain the risk factors for automation projects

Test Automation Success Factors
(K2) Explain the success factors for automation projects
(K1) Recall the recommended order for automation implementation

Test Automation Tools

Test Automation Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Introduction

Test automation is a method of testing that uses automated test scripts rather
than manual test cases. The test scripts are small software programs written
in a scripting or programming language that accomplish the goals of a test by
controlling the inputs to a software module and verifying that the results match
the expectations. In its simplest form, a script mimics the user interaction with
the system under test (SUT) and is programmed to report any variances from
the expected behavior.

Test automation can be expensive to implement, but, when done correctly, can
save enormous amounts of manual testing effort. With effective use of test
automation, the quantity of tests executed can be increased, which results in
greater requirements coverage, shorter time for execution and higher reliability
and repeatability in the testing.

Test Automation Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Selecting Test Automation Candidates
In order to maximize the efficiency of the
automation effort, the test automation must be
designed for long term use and maintainability.
The return on investment (ROI) for test automation
is based on the amount of money/time required to
build the initial software and to maintain it over
its lifetime (the investment), compared with the
time saved from the equivalent manual testing
effort (the return). A test automation project
is only worthwhile if the return will be higher
than the investment. Not all software is suitable
for automation and attempting to automate
unsuitable software will reduce the potential return
while increasing the investment.

Good project candidates for automation
share some common characteristics.

Expected long term usage – Because test
automation is generally expensive to develop due
to the cost of the tools and the effort to create
the test scripts, the resulting automated tests
need to be run multiple times to recover the costs.
A standard heuristic is that the target software
should remain in production for 2-5 years in order
to regain the automation costs.

Test Automation Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Stable functionality and interface – To reduce
maintenance costs due to changes in the
programmed scripts, it is more cost effective to
create the test automation at the point when the
target software has stabilized. Stabilization is
generally reached when a set of core functionality
is working and will not be substantially changed.
It is also important for the interfaces used by the
automation (e.g., the UI, the APIs) to be established
and unchanging. Changes to the interface will
require updates/changes to the test automation
scripts that access the SUT via that interface.

Need for frequent regression testing – The
best automated tests are those that are used
frequently. When the software under test has need
of frequent regression testing, test automation can
be utilized to effectively and quickly conduct those
tests and provide reliable and repeatable results.
The more frequently the tests are used, the higher
the return on investment.

Adequate tool support – Not everything can or
should be automated. While there are many tools,
and the tool family continues to improve and
expand, there may be situations where the right
tool is not available. This sometimes happens
with code that uses unique interfaces or for
embedded software that is communicating with
hardware. Some of these issues can be resolved
with simulators (i.e., software that is created to
act like the software under test) or emulators (i.e.,
software that is created to act like the software
working on the hardware under test), but
sometimes the only option is to create a custom
tool. Before this option is selected though, there
must be an understanding of who will provide on-
going support for the tool and how much effort will
be required to create the tool.

Test Automation Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Adequate skills in the team – Developing test
automation is a software development project
and should be conducted as such, with proper
design, architecture, development, testing and
documentation. While some tools provide a more
user- friendly interface (generally at a higher
cost), true programming skills are usually required
to either write the test automation scripts or to
write “glue-ware” that will stand between the test
automation scripts and other capabilities (such as
opening and parsing emails).

Management support – Test automation can be
an expensive process and requires management
support, understanding and approval. Tools can
be expensive to purchase and may have license
renewal considerations. Specific programming
skills are required which may necessitate
hiring people with skills for the selected tools.
Because schedules can sometimes be delayed,
it is important for management to have a clear
understanding of the work required to achieve the
desired level of automation.

Test Automation Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

Building Maintainable Test Automation Software
Maintainable test automation starts with building
an automation framework. The value of a test
automation framework is that it provides a
way to identify and control all test automation
testware. Without a framework, the result is often
an inconsistent and unmanageable collection of
automated test scripts. Building the framework
also requires implementing the right tools,
selecting and training the right people and creating
the overall automation plan. The following steps
are needed to create an effective framework for
test automation.

Deciding on Data-Driven vs.
Keyword-Driven Approach
Data-driven test automation separates the test
script (the steps to be executed) from the data to
be used (for input and verification). The data is
usually accessed by the script from a spreadsheet
or database and is maintained by a test analyst

with good knowledge of the domain to be tested.
This allows for the best use of the programming
skills of the automation engineer while the testing
skills of the test analyst are leveraged to supply
and control the data. This separation provides
a higher level of maintainability by allowing a
single script to conduct many tests where the only
variance is the test data.

Keyword-driven test automation goes one step
further and uses action words, or keywords, to
describe the actions to be performed by the script.
The test analyst defines the actions that are to
be tested (e.g., add a user) and the data to be
used by the actions (e.g., first name, last name,
and address). The automation engineer writes
a test script that will read the action and then
perform the appropriate steps using the provided
data. This type of coding allows the script and the
data tables with action words to be reusable for
multiple tests and limits the areas where changes
are needed when new functions are added.

Test Automation Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

Keyword-driven test automation is particularly
well suited for early automation development with
Agile and similar SDLCs where automation is built
while the software is still evolving. New keywords
can be added as new functionality is developed,
allowing automation to start early without creating
a large maintenance effort later (i.e., accruing
technical debt).

Implementing the Framework
When a framework is created, standards are
established for the test automation development
project. Naming conventions are defined and
reusable functions are created to form the basis
of the library. Elements from the library can be
re-used in various scripts, reducing the need
for development and lowering the maintenance
requirements by having common shared code. A
good framework is essential for creating efficient
test automation that will be maintainable across
a set of automation engineers. A framework, once
established, also allows automation engineers
to work on adding more to the function library
as time allows, making the framework a living
structure.

Building Continuously
An automation project is generally considered
complete only when the software under test is
no longer changing and no changes to existing
tests are needed. Until that time, the automation
must be continuously monitored, maintained and
augmented to maintain and increase coverage
of the software under test. Test automation that
is not updated will result in declining coverage
over the life of the software under test, increasing
the chances of regressions escaping unnoticed.
It is important to understand the on-going
maintenance costs of a test automation suite to
factor into the budget.

Test Automation Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Benefits of Automated Testing
There are a number of benefits to automating
testing. The primary benefits include the following:

• Automation can execute more tests in a shorter
period of time, which in turns helps to increase
test coverage

• Scripted tests will always run the same steps
in the same order, providing greater reliability,
repeatability, and improved consistency

• Reusability of automated tests facilitates future
regression testing

• Faster release cycles are possible with lower
regression risk

• Tests that are complex and difficult to
execute manually can be good candidates
for automation, to reduce the burden on the
manual test effort

• Using data-driven or keyword-driven
techniques allows more tests to be generated
by adding more actions/data with no scripting
changes

• The same tests can be run against various
hardware and software configurations resulting
in compatibility tests being automated

• More time is available for testers to explore new
areas of the software that may have previously
been untested, resulting in higher quality
software

Test Automation Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

• By improving the frequency of testing
(particularly regression testing) the continuous
testing required for DevOps initiatives is
possible

• By testing earlier with the use of automated
tests, defect detection and remediation is less
expensive

• Tests can be executed at times when people do
not need to be using the system

A well-implemented test automation program will
result in overall improvements to the efficiency
of the testing, which in turn results in lower
test execution costs. Test automation allows an
organization to move to a faster release cycle with
higher quality, allowing better responsiveness to
market needs.

Test Automation Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Test Automation Risks
There are risks with a test automation effort. These
risks include the following:

• Management may perceive there is less need
for manual testers when automation is in place.
In reality, manual testers’ roles are expanded
when test automation is introduced.

• Automated testing is not automatic testing.
Test automation systems can be brittle if not
designed and constructed properly. This is a
problem that is frequently seen with scripts that
have been recorded from execution rather than
having been designed for maintainability and
reusability. Recorded scripts can be a basis for
script development, but the recording must be
converted to a reusable, well-structured and
maintainable script.

• Test automation does not necessarily improve
the effectiveness of testing in terms of defects
found, as the quality of the automated tests
depend on the quality of the test cases (such as
the correct test conditions) and the basis for the

tests (such as specifications). It is common for
automated tests to become more confirmatory
in nature as opposed to discovering new
defects.

• Proper tool selection is critically important.
Selecting the wrong tool due to an inadequate
evaluation process can create extra effort and
may render the implementation impossible.

• Tool support must be reliable. Open source

tools may go dormant if there is no strong
community support. A commercial tool’s vendor
may go out of business or change directions.
Tools may experience unexpected changes
requiring unplanned changes in the testware.

• Automation will not solve all testing problems.
If a good testing process is not already in place,
the automation effort may just speed up chaos.

• Accurate reporting can be difficult. Failures may
cascade causing the numbers to inaccurately
reflect the quality of the software. Defects must
still be analyzed and documented by a person.

• Poor maintainability will be expensive
Potentially, very expensive.

Test Automation Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Test Automation Success Factors
In addition to the characteristics of good
automation targets, there are also some common
success factors that will help to ensure the
automation effort achieves the defined goals.

Find the Right Project
The first step in a test automation project is
identifying the appropriate software system
candidate. Systems that are near their sunset
years and will soon be retired are generally not
considered good candidates for automation as
the return on investment will be short-lived. An
exception to this might be starting test automation
development on a retiring system to capture data
and tests that will be valid in the replacement
system, albeit with adjustments for the new
interface.

Build Automatability into the
System
Building a maintainable and reusable test
automation suite starts with ensuring that the
design of the system to be tested supports and
facilitates test automation. One common issue
in test automation efforts is trying to automate
software which is inherently difficult to automate.
This could be because it contains inconsistently
named or mis-named objects. For object-based
test automation (which is the standard and
preferred approach in test automation), object
identification is essential for creating maintainable
test automation. Limited test access to APIs, a lack
of observability during testing, insufficient logging,
etc. can also significantly complicate the test
automation effort, leading to more time and money
spent on maintenance throughout the life of the
automation. Early involvement by the automation
engineer during the design of the system to be
tested can help to ensure that the necessary
support for the automation is built into the system.

Test Automation Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

Show Early Success
A large automation project can take years
to complete. It is important to create interim
milestones and demonstrate that the milestones
are being met. In general, there are three areas
of automation focus. In order of priority (and to
provide the most visible return on investment
quickly), implementation should proceed as
follows:

• Create acceptance/verification tests for the
software build – these are positive path tests
that are used to verify that the code added
to the build did not “break” the build. These
tests are run every time code is committed and
provide fast feedback to the developers if any
issues have been introduced. In a frequent build
environment, such as Agile, or in a continuous
integration model, this automated testing is
critical to the success of the process.

• Regression tests – regression tests are
generally stable and well-defined. Automation
for these tests is efficient because they will be
used many times over the life of the product
and that automation will save significant
manual test execution time. Automated
regression tests allow a team to release
software safely, more frequently, and free
testing time for more important areas.

• Functionality tests – in general, test automation
is faster when the software being tested is
stable. This results in fewer changes to the
automation because the code being tested
is not changing. That said, functional testing
still needs to be automated, particularly in the
rapid SDLCs, such as Agile. In this case, the
code may not be stable as new features are
still being added and evolved. Maintainability in
design is critical for the test automation effort
to be able to make forward progress and not be
consumed by maintenance issues.

Test Automation Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Review the Plan
Original estimations for an automation effort are
sometimes wrong. This may be due to technical
issues, frequently changing SUT, slow ramp-up
of the testing team or other reasons. Reviewing
the plan and validating the schedule should occur
on a periodic basis to understand changes to the
schedules and identified risks. It is also important
to continually set realistic milestones and report
on the achievement of those to the management
sponsors of the effort.

Define Ownership
Automation requires upkeep and analysis to
ensure it is working properly. Identifying a resource
that can be called upon to detect and correct
issues is critical to continued, uninterrupted use of
automation in testing. Likewise, it is important to
identify who will run the test automation and when
it will be run. Often the manual testers assume
the responsibility to execute the automation and
do the preliminary debugging if an issue is found
(by manually testing any failures that occur).
This helps the manual tester to engage with
the automation and also frees the automation
engineers from debugging issues that may be due
to data or environment changes.

Test Automation Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Test Automation Tools
Early tools depended on recognizing characters
that a user entered onto the screen or via a
command line. With the advent of graphical
systems, tools evolved to support coordinate-
based positioning and text recognition of fonts
and screen characters. Eventually, tools further
evolved to recognize the native objects displayed
on the windows, where multiple object attributes
could be verified and the objects themselves could
be accessed for interaction. With the advent of
interfaces such as those used for web services,
tools additionally supported the ability to bypass
the UI and call the function, service, or method
directly, often through the API.

Future uses of automation tools will include robotic
process automation (RPA), artificial intelligence
(AI) and machine learning to allow the tests to

adapt to the executing software, providing greater
coverage and less up-front programming from the
automation engineer.

Test tools cover a range of features, functions and
levels of customizability. For teams with strong
programming skills, tools that allow development
of purpose-built functions are appropriate. For less
technical test teams, tools that require minimal
programming may be more appropriate. It is
important to identify a tool that meets both the
needs of the SUT and the skills of the team.

Test Automation Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

References
ISO/IEC/IEEE Standards

• ISO/IEC/IEEE 12207:2017
• ISO/IEC/IEEE 15288

Trademarks
The following registered trademarks and service marks are used in this document:

• AT*SQA® is a registered trademark of the Association for Testing and Software Quality Assurance

Books
[Anderson00]: Anderson, L.W. and Krathwohl, D.R. (2000) A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Allyn & Bacon: Boston MA, ISBN-10:
080131903X

[Firtman]: Maximiliano Firtman, “Programming the Mobile Web”, O'Reilly Media;

Second Edition (April 8, 2013), ISBN-10: 1449334970

[PMBOK] Project Management Institute, “A Guide to the Project Management Body of Knowledge (PMBOK
Guide) – Sixth Edition, 2017, ISBN-10: 9781628251845

Test Automation Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Other References

The following references point to information available on the Internet. Even though these references were
checked at the time of publication of this syllabus, AT*SQA cannot be held responsible if the references are
not available anymore. AT*SQA is not endorsing any of these sites or their products. The references are
provided as a source of information only.

https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-money-just-disappeared/ https://www.reuters.
com/article/us-facebook-settlement/facebook-settles-lawsuit-over-

2012-ipo-for-35-million-idUSKCN1GA2JR

[NASDAQ] https://www.sec.gov/news/press-release/2013-2013-95htm

National Institute of Standards and Technology. Framework for Improving Critical Infrastructure
Cybersecurity. Version 1.1. 2018. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

National Institute of Standards and Technology. Risk Management Framework for Information Systems and
Organizations: A System Life Cycle Approach for Security and Privacy. Revision 2. 2018.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

[WCAG] https://www.w3.org/WAI/policies/

www.atsqa.org

