
Test Automation: Tools & Solutions
Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Automation - Tools & Solutions Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Automation - Tools & Solutions
3	 Overview
5	 Acquisition
12	 Test Environments
20	 Types of Tools
23	 Tool Sources
25	 Frameworks
27	 Techniques
30	 Examples - Tools and targets
36	 Conclusion

Test Automation - Tools & Solutions Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

Overview

This micro-credential describes the various tools and methods used to
achieve successful test automation.

Not every test automation effort is tool-based. Some organizations
choose to apply pure scripting or coding to implement test automation.

For that reason, some use the term “Test Automation Solution” so as not
to assume tool usage. In this syllabus, we use the term “test automation

tool” with the understanding that the tool may be a fully-contained
software application (e.g., Playwright and Cypress), a coding language
(e.g., Python), external input (e.g., database, Excel, etc.), or all of these.

Test Automation - Tools & Solutions Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST AUTOMATION: TOOLS & SOLUTIONS
Overview

Aquisition
Summarize the different perspectives and goals for test automation
Explain the goals of a proof of concept exercise
Summarize the cost factors for a test automation tool and effort
Summarize the common licensing models for test automation tools
Summarize the factors to consider when calculating ROI

Test Environments
Explain the purpose and need for services to be mocked or virtualized
Summarize the types of environments that may be used for test automation
Summarize the components of a test automation solution
Explain how integrations may affect test automation

Types of Tools
Summarize the pros and cons of different types of tools

Tool Sources
Compare the different sources of tools

Frameworks
Explain how to design a test automation system for maintenance and re-usability

Techniques
Summarize the characteristics of good test automation frameworks
Summarize the framework approaches

Examples - Tools and Targets
Compare LowCode, NoCode, RPA and Code First tools
Summarize the uses of the programming languages in test automation
Compare the different test automation framework tools

Test Automation - Tools & Solutions Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Acquisition
Tool acquisition may be one of the most
challenging aspects of test automation. There
are many test tools and solutions on the market,
some better than others. There is also the trap of
believing that just because you have acquired a
tool you can be successful with it.

Even in the case of free and open source tools,
an acquisition effort is involved. For example,
security approvals may be required, and technical
assistance in obtaining the tool may be needed.
In addition, licensing terms need to be closely
examined.

In this section, we cover how to compute
and justify the return on investment of a test
automation solution and how to perform an
adequate evaluation and proof of concept of the
tool. It is also very important to consider how to
get buy-in from the entire organization to use a
particular tool or solution. Buy-in is needed from
the larger project team, including the developers,

testers, project managers and other stakeholders
to ensure the understanding and acceptance of
the cost to purchase and implement the tool. Buy-
in is needed from the wider organization because
the tool should be usable across multiple, if not
all, projects. Acquiring different tools for different
projects tends to be inefficient and creates an
unnecessary learning curve unless there is a
compelling reason such as unique technical
concerns associated with a certain project.

Getting buy-in (Developers,
Testers, Operations,
Management)
An important part of the tool acquisition process
is getting others in the organization to approve of
and support the tool choice. One way to do this is
to involve stakeholders in the evaluation.

Test Automation - Tools & Solutions Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Different stakeholders have different perspectives
and goals for test automation. For example,
developers often want test automation to integrate
with tools they already use for unit testing and CI/
CD. Testers want effective and sustainable tools to
build regression test suites and reduce the manual
testing load. Management wants faster testing
with lower cost and high-quality deliverables.

It may be difficult to get approval and budget
for a test automation effort in a project-focused
environment where budget is allocated for the
development of the project, but the support is
handled under a different budget. In this case,
it may be difficult to get approval for the money
to develop the test automation since the project
development sees little benefit from it and the
support group, who would see the most benefit,
doesn’t have any project money allocated for
automation.

It’s important for all stakeholders (including
project managers) to agree on the direction to
avoid “shelfware,” where the tool is acquired and
installed but seldom used. Continuous engagement
of all relevant stakeholders throughout the
acquisition and implementation process can
achieve this .

Evaluation / POC
It is vital to do a complete evaluation of any tool or
solution candidate to determine the degree of fit.

Evaluations are typically short in nature and are
often based on demonstrations and information
provided by the vendor.

A Proof of Concept (PoC) is much more involved
and is intended to test how well a tool candidate
can handle test automation tasks in a given
environment with actual applications to be tested.
A POC may take days or weeks to perform.

Working with the tool vendor during the PoC can
help to identify solutions for problem areas (e.g.
accessing an image within a table) and can also
provide an opportunity to assess the support you
get from the vendor. Any complicated software
application will have areas that are difficult to
automate. Having support ready to help can save
time and can help build a valid PoC.

Test Automation - Tools & Solutions Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

FEATURES, CAPABILITIES, AND
LIMITATIONS

Features are what the tool can do functionally and
how it behaves non-functionally (such as how
usable it is).

Capabilities are what the tool is able to do beyond
the feature set. For example, a tool might list
integration with other tools as a capability. It is
not unusual to need to have the test automation
tool integrate with the test management tool to
ensure reporting is consistent across manual and
automated testing.

Limitations are very important to identify as
they might rule out a tool in your evaluation. This
is best learned early in the evaluation process.
For example, a tool may not interact well with a
particular platform, which is a limitation. Some
tools are designed for web applications but cannot
support desktop applications. Others specialize in
mobile applications. Ideally, the selected tool will
work effectively on all the required environments.
This is an important consideration to include in
your evaluation criteria.

COST

Tool purchase and licensing costs can be obtained
early in the evaluation effort and can be based
upon:

•	 Number of people developing tests
•	 Number of people executing tests
•	 Number of tests performed in a given period of

time
•	 Number of concurrent execution streams

(agents)
•	 Number of devices (real and/or simulated),

browsers, operating systems, versions, etc.

Other costs of ownership include:

•	 Training
•	 Upgrades
•	 Maintenance
•	 Add-ons and plug-ins

The availability and type of training may depend
on the base knowledge of the testers. For
example, some tools require good programming
knowledge where others are designed to require
only business domain knowledge. It may not be

Test Automation - Tools & Solutions Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

realistic to assume manual testers will be able
to learn programming (or will want to) in the
timeframe available for training.

2.2.3	 LICENSING

Licensing models can take many forms and
are constantly changing. It is imperative to
fully understand the license of any tool under
consideration, as there could be hidden costs,
limitations, and requirements. Some of the
open source models, such as GPL, are very
restrictive. Licensing isn’t necessarily just a
purchase consideration; long-term ownership and
usage may influence the type of licensing that is
acceptable.

The most common licensing models include:

Open source
•	 Permissive – Minimal restrictions with the

most flexibility. Users can freely use, modify,
integrate, and distribute the software without
requiring changes to be open sourced.

•	 Copyleft - Requires modified works that
incorporate open source code also be open

sourced under the same terms. An example is
the GNU General Public License (GPL).

•	 Weak copyleft – Adds some flexibility. An
example is the Mozilla Public License.

•	 Public Domain – No restrictions at all. Creative
Commons is one example. In another example,
people have created entire test frameworks
based on Selenium IDE and WebDriver and
sold them commercially with no obligation to
the Selenium project.

Commercial
•	 Node-locked – The tool can be used only on

one specified machine.
•	 Perpetual – The license is based on a one-time

fee.
•	 Floating – The software can be used between

machines with a limit on how many users can
concurrently use the tool.

•	 Maintenance – This covers changes that
inevitably will be needed to stay current with
the tool.

•	 Elastic – combines “pay as you go” and
subscription models where you lease a certain
base-level of usage rights, but can expand
users (or virtual users) on demand if needed.

Test Automation - Tools & Solutions Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

This model is commonly used with performance
testing tools.

•	 Concurrent – X number of users can use the
tool at a given time.

•	 Subscription – Pay by the month or year based
on the number of users. May include updates to
the tool, similar to a maintenance license.

•	 Freeware and Freemium – Free to use to a
certain extent, often with restrictions on key
features. To gain the more valuable features, a
paid license is required. One example of this is
SoapUI which is used for API testing. There is a
free version and a paid “Pro” version. Both are
downloadable apps. This model is also seen in
SaaS tools such as Blazemeter for performance
testing which allows a certain number of
executions and virtual users per month.

Justifying ROI of Test
Automation
An essential activity in tool acquisition is projecting
when a positive Return on Investment (ROI)
of test automation should be achieved. ROI is
basically when the value of positive benefits of
test automation starts to exceed the cost of the
tools and other related costs such as personnel,
environments, and process modifications.

ROI projections are estimates based on
information at the time of the projection. These
projections are often over-optimistic due to:

•	 Underestimating the complexity of the tests to
be automated

•	 Underestimating the effort needed to create
and maintain the automated tests

•	 Not considering the new skills needed to
implement and apply the tool

•	 Unforeseen costs, such as if the vendor
increases licensing costs

•	 Technical problems encountered in using
the tool that require significant effort to

Test Automation - Tools & Solutions Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

resolve, such as unforeseen tool limitations,
test environment complexities (such as lack
of integration, environment creation and
maintenance), missing or highly dynamic object
locators.

Investment costs can include:

•	 Tool licensing
•	 Obtaining external expertise in implementing

and using test automation
•	 Training for the existing team in tool usage and

test automation practices
•	 Hiring new personnel with test automation

expertise
•	 In the case of free and open source tools, the

total cost of ownership (licensing, configuration,
and maintenance)

•	 In the case of “homegrown” tools, the cost
of software development, such as labor and
ongoing maintenance

•	 Integration with other tools in use
•	 Creation of automated tests and the framework
•	 Creation and maintenance of the test

environment and test data

The return value can include:

•	 Reduced time needed for testing, which may be
seen as more cycles of testing performed in a
given period of time

•	 Increased test coverage, such as using a more
comprehensive range of input data

•	 More accurate and repeatable testing
•	 Removal of the burden of repetitive manual

testing so testers can focus on complex and
more mentally demanding tests that cannot be
automated

•	 Intangible benefits such as less drudgery and
career growth opportunities

•	 Earlier testing, such as in-line CI/CD tests
•	 Higher quality and reduced regressions
•	 Better automated and objective reporting
•	 Improved time to market for product changes

due to the faster testing cycles

Notably absent from the above list are the
reduction of testers needed and higher numbers of
defects found. Test automation does not replace
testers; it enables them to test better where tools
can’t. Also, test automation is very confirmatory
when it comes to finding defects. In fact, it is

Test Automation - Tools & Solutions Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

problematic if too many automated tests fail. This
is one reason why test automation is best applied
in regression testing and other kinds of tests, such
as CI/CD, where there is high repeatability.

However, keep in mind that application changes
can impact locators which can ripple and cause all
tests to fail due to not being able to find the object
specified in the tests. This can be prevented by the
use of reliable locators other than XPath or CSS.

Essentially, positive ROI has been achieved
once it can be shown that the value seen in test
automation outweighs the cost. A requirement for
knowing if ROI has been achieved is being able
to measure the above items. An example of this
is the metric known as Equivalent Manual Testing
Effort (EMTE). For example, if manual testing of

a test suite requires four hours per execution,
and the test suite is executed 10 times per week,
manual testing can be expected to take 40 hours
to execute per week (EMTE). If all the tests in the
suite are automated and each test run now takes
one hour to perform and evaluate, the automated
time is 10 hours for a savings of 30 hours of EMTE
each week.

It is important to note that the EMTE metric does
not include test development and maintenance.
EMTE is just one way to show the value of test
automation.

Test Automation - Tools & Solutions Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Test Environments
A primary consideration for the selection,
implementation and use of test tools, specifically
test automation tools, is that of test environments.
Test tools that are used to create, execute, and
maintain test automation can be considered
part of the larger test environment in which they
operate, along with other components such as test
data and the applications under test.

Setup, Configuration and
Maintenance
The creation and ongoing maintenance of a test
environment involves many tasks. This topic
describes some of the top considerations.

SECURITY (USER CREDENTIALS AND
PERMISSIONS)

Once a test environment has been established,
the proper security credentials and permissions
must be established. These credentials include
those needed for human testers, virtual users
(such as those established for test user accounts
in an application), devices, test databases,
files, and other assets. Unfortunately, security
access is often an afterthought that can delay
further test automation progress. Security setup
usually requires setting up the proper roles and
users within those roles so that the access is
controlled and testable. Creating test users can
be a maintenance issue if the test environment
is frequently refreshed from the production
environment. Developing test automation scripts
that create the necessary test users and roles may
be a worthwhile effort.

Test Automation - Tools & Solutions Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Service Virtualization

Service virtualization or service mocking is used
to create a test service that is used instead of the
real service. This may be needed because the real
service is not available (such as a service that is
used to validate a credit card number), or because
the service has not yet been developed (as in a CI/
CD pipeline). There are two primary methods for
creating virtual or mocked services.

Virtualized services can be created with service
virtualization tools which will either analyze the
code or monitor a live service to determine what
are valid transactions. These are then mimicked
back when the virtualized service is called. For
example, you can run the tool for a set of credit
card validations using both valid and invalid
cards. These cards are then used in testing and
the responses from the virtualized service are the
same as would be retrieved from the real service.

Mocked services are usually created by coding a
stubbed service. They are often quite simple and
will usually just return a positive result. In the
credit card example, the mocked service might
always return “valid” for any card number it
receives.

The purpose of creating these mocked or
virtualized services is to allow test automation,
to be developed and run even before the real
services are in place. This allows automation to be
developed sooner and to be effective early in the
CI/CD pipeline. As the real services are created,
the mocks are removed and the APIs have already
been tested.

Service virtualization is a technique to enable
virtual delivery of services which are deployed,
accessed and managed remotely. An example of
this would be a date and time conversion service
that is accessed remotely and which resides on
a virtual server. For purposes of test automation,
knowing how virtual services are accessed is a
major part of environment definition. Timing issues
can be a problem as delays can result in failed
transactions .

This process is known as synchronization and can
apply to mock services as well. These services may
be local and may not be fully implemented. Some
people deal with synchronization using wait times,
however, care must be taken not to increase wait
times too much as this incurs a penalty in tests
that run too long. The impact is that tests often

Test Automation - Tools & Solutions Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

need tuning in terms of synchronization. This is
part of test script maintenance and is best done
when isolated to one or a few test scripts.

ONGOING MAINTENANCE

Just as test automation maintenance is ongoing,
so is test environment maintenance. This includes
updating and/or restoring test data for new test
conditions, resetting test data after a period of
testing, or syncing date-based test data to current
processing dates. It is often a part of the test
automation suites to have specific data generation
or manipulation scripts.

Backing up the test environment is a consideration.
If restoring the environment is desirable
rather than building it from scratch, periodic
backups should be performed. Outages in test
environments can have significant impact on
project schedules.

Multiple Environments
Test automation may span multiple environments
depending on the level of testing and type of
testing being performed. When test automation
is used at the system integration level, multiple
system environments are likely to be needed. It
is not unusual for SaaS systems to have a “test”
environment, but more than one environment
may be needed (such as one for UAT, one for test
automation development, one for performance
testing, etc.). These environments can be
expensive to procure and may require additional
configuration to integrate these with other test
environments. This requires time for initial setup
and maintenance and must be planned early in a
project.

UNIT TEST

Unit test environments are typically controlled by
the developers and often vary greatly depending
on the type of application being developed (web,
mobile, etc.). In general, in a CI/CD process, the
test automation will be expected to run in these
developer-managed environments to provide

Test Automation - Tools & Solutions Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

continuous testing for the build and integration
pipeline.

TEST/SYSTEMS INTEGRATION TEST

These environments house entire systems,
and sometimes multiple systems. A systems
administrator or multiple administrators often
control these environments. SaaS systems are
usually managed by a vendor who may charge for
system administration services and may control
access in a way that limits what test automation
can access (such as a database to verify test
results).

UAT

While User Acceptance Testing is often a manual
activity, some aspects of it can be automated.
A frequent goal of UAT test environments is to
mimic a live environment as closely as possible,
realizing that exact replication is typically not
possible due to the dynamic and sensitive nature
of the test data. In addition, live systems may
have databases that are too large to replicate in
a test environment. When UAT must be run with

multiple test cycles, creating and maintaining test
data with test automation may significantly reduce
the need for manual setup for each cycle of testing.

When large systems are being implemented,
there is often a data migration process happening
concurrently with testing. This makes it difficult
to control the data as it will change with each
data import. Being able to maintain controlled
test data, either by creation or manipulation, is a
requirement for the smooth progression of testing.
This is particularly important in UAT testing when
users are not necessarily data-aware and will be
upset when the data changes between test cycles.

STAGING

The staging environment is typically the final
environment before an application is released to
production. Like UAT, this environment may closely
replicate the live environment. However, if live data
is used, it is essential to avoid unintentional actions
against actual customers or users, so care must
be taken. For example, an application that sends
notifications to users could inadvertently send test
notices to actual customers if controls are not in
place to prevent such events.

Test Automation - Tools & Solutions Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Anytime production data is used, it is important to
understand how it will be used and to whom it will
be exposed. For example, credit card information
cannot be shared with testers or appear in testing
reports. Mocked data, either anonymized real data
or fake data, should be used at all times to avoid
the potential impact to personal information.

LIVE PRODUCTION

While testing in production has inherent risks,
there may be times when test automation is used
to detect problems in production. The main risks to
be considered and mitigated are:

•	 Inadvertent data updates or destruction
•	 Degradation of performance
•	 Inadvertent access or exposure of personal

information

Types of Environments
There are many types of test environments. In
this syllabus, we address three of the broadest
categories.

ON-PREM

These environments reside on servers under
physical control of an organization, usually
“on premises”. The organization is responsible
for all aspects of establishing, configuring
and maintaining the environment, including
hardware, networks, operating systems, test
data, applications under test, and test automation
tools including their assets. There is usually
more control over these environments and more
flexibility for usage as the system administrators
are part of the organization. These administrators
must be included in any planning and design
of test automation frameworks to ensure the
environments will be available as needed.

Test Automation - Tools & Solutions Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

CLOUD

Cloud environments reside on servers often
controlled by third-party companies. The exception
are private and hybrid cloud environments, which
are still under control of the organization.

Cloud test environments offer the advantages
of lower cost of ownership and scalability upon
demand. However, the configuration, control and
maintenance of the test environment is still the
responsibility of the organization.

Care must be taken to understand the costs
associated with whichever cloud service is being
used. There have been cases of organizations
incurring very high costs unknowingly. Test
automation makes this easy to do, particularly on
systems that automatically scale based on usage.

For more information on cloud test environments,
please see the Cloud Testing syllabus at https://
atsqa.org/micro-credentials/testing-using-the-
cloud

DISTRIBUTED

Distributed test environments are under the
control of an organization, but the platforms are
in multiple locations. An example is mobile testing
performed on real devices around the world.

Components

HARDWARE

Regardless of the type of environment (such as
cloud, on-prem, and distributed), hardware is the
foundation for everything. Hardware encompasses
servers, desktop computers, notebook computers,
mobile devices (phones, tablets, etc.), peripherals
(hard drives, monitors, keyboards, mice, etc.), and
special purpose devices (barcode scanners, etc.).

It is important to ensure hardware version
compatibility and correctness with the tools being
used and the applications under test. Where
unique test environments are required, it’s also
important to confirm availability and access
settings for these components.

Test Automation - Tools & Solutions Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

TEST DATA

Test data supplies test tools with needed input
to support test conditions in test scripts. In some
situations, the test data may be stored in a
separate file or database to support data-driven
testing. Alternatively, test data may be supplied
in the test script itself. If production data is to be
used for testing, anonymization may be required to
protect personal information. Anonymization may
be a non-trivial exercise requiring planning and the
availability of special skills and tools.

APPLICATIONS UNDER TEST

The application to be tested can take many forms,
such as:

•	 Web pages and web-based applications
•	 Mobile apps
•	 Desktop apps

Regardless of the type and form of the application
under test, configuration management (CM)
is essential to ensure the correctness of the
application version in relation to test scripts,
operating systems, test data, and co-existing

applications. Failure to perform CM leads to invalid
or incorrect tests, including false positives and
false negatives.

Integration
Test automation must take into consideration
integration. This integration can be between
components, systems, environments, databases,
and external entities. Integrations that are not
available or not reliable in the test environment
may have to be mocked to allow testing to
proceed. The earlier the testing occurs in the
pipeline, the more likely the integrations will not be
available.

SERVICES

In this context, services are small, self-contained
pieces of code to perform very specific functions.
Sometimes, these are called “microservices”.
These are commonly found in the cloud and
accessed as web services using API test tools
such as SoapUI or Postman. However, some test
automation tools such as OpenTest can also
perform APIs testing. Like the integrations they

Test Automation - Tools & Solutions Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

may support, the services may not be available
for testing when the application under test is
tested. Service virtualization and mocking are
often used to simulate the services that are not
available. Tools are available that can create mock
or virtual services based on specifications, the
code, or by recording and replaying transactions.
See Section 3.1.2 for more information on Service
Virtualization.

BETWEEN TOOLS

A common concern with test tools is whether or
not they will work together in a larger picture.
For example, test management tools should

integrate with test design and test execution
tools to manage test cases and collect metrics
about the tests. Integration and interoperability
of tools should be part of the evaluation criteria
for tools under consideration to ensure the tool
suite will provide the necessary capabilities. If the
tools do not integrate out of the box, additional
software may have to be developed to create
an interface that will support transferring data
between the tools. This sometimes requires
manual intervention, but that can create significant
overhead and complexity for the testers when
testing is occurring.

Test Automation - Tools & Solutions Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

Types of Tools
Test automation tools and solutions can take many
forms. There are pros and cons to each of these
tool types, and the best fit for a particular need
depends on the evaluation outcome and proof-of-
concept (PoC). The pros and cons shown here are
generic and may or may not apply to a particular
environment or project.

No code
These tools promote the ability to create test
automation by either recording a test session
or dragging and dropping test actions into a
sequential order of execution. The tool determines
if a test passes or fails with no additional
assertions needed.

Pros:

•	 Easy to use
•	 Quick way to build scripts
•	 Workflows can be built from building blocks,

allowing good flexibility
•	 Starting point for learning test automation

Cons:

•	 Can be expensive
•	 Scripts are difficult to maintain and are usually

just re-recorded when changes occur
•	 Integration with other tools is not usually

included
•	 May not work with more complex applications

or environments
•	 Don’t allow coding to work with complex or

unusual code

Low code
These tools are often mentioned as a variant of No
Code tools. The difference is that Low Code makes
provision for coding as needed. Common reasons
for needing to work with code might include
complex conditional logic, dealing with GUI objects
that do not respond as expected, and adding
diagnostic messaging to assist in troubleshooting.

Test Automation - Tools & Solutions Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

The tool determines if a test passes or fails with
no additional assertions needed, but additional
assertions can be created depending on the nature
of the item being automated and the nature of the
test.

Pros:

•	 More flexible than No Code
•	 Provides a good basis for both technical and

non-technical testers to use the tool effectively
•	 Some coding is allowed, so complex

applications can be automated
•	 Objects that cannot be immediately recognized

by the tool can be coded to work
•	 Can be a starting point for automating complex

tests

Cons:

•	 Tend to be expensive, although not as much as
the No Code tools

•	 Coding skills may be required to use the tool
effectively

Robotic Process Automation
(RPA)
RPA tools automate business tasks such as data
entry. While not a test tool per se, they can be
used to create test automation scripts. Verifying
results is performed as a separate activity, as this
is not a typical feature of RPA tools.

Pros:

•	 Because objects are not individually identified,
the tools can work on objects that other tools
cannot recognize

Cons:

•	 Because these tools were not designed to be
test tools, there is no inherent comparison or
reporting capability.

Some have used test automation tools to perform
RPA. For example, a No Code or Low Code tool
can record and playback functional actions for the
purpose of performing them but not for testing
them.

Test Automation - Tools & Solutions Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Full programming
Full programming can be used to create test
automation in a variety of ways using:

•	 Existing tools that are script-based with no
recording ability. Examples would be Selenium
WebDriver, Junit, and OpenTest.

•	 Coding languages such as Python, Ruby and
JavaScript

Pros:

•	 Complete flexibility to do anything needed
•	 Maintenance depends on coding stills and

architecture

Cons:

•	 Programming skills required, almost to the level
of a developer

•	 Maintenance can be costly, depending on
architecture

Visual (AppliTools, Sikuli)
Visual test automation tools focus on the
appearance of the object under test to detect
any differences from a previous test. This can
help identify defects such as incorrect GUI
object appearance. These tools make use of
visual images captured in one test to evaluate a
subsequent test.

These tools can also inspect an object under test
to determine if the items shown are correct. For
example, a tester might use a visual tool to verify a
specific text or other item shown on a GUI.

Pros:

•	 Easy to use and apply
•	 Minimal setup needed
•	 Finds visual defects not otherwise detected by

functional test automation tools

Cons:

•	 Limited to visual differences
•	 Costs vary from free to moderately expensive

Test Automation - Tools & Solutions Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

Tool Sources
Another helpful way to categorize tools is by their
source. The most common sources are commercial
and open source. However, some organizations
prefer to build their own tools, frameworks, and
scripts using languages such as Python, Ruby, and
JavaScript.

Commercial tools
Commercial tools are sold by vendors with the
intent of making a profit. These tools can vary
widely in functionality, cost, and licensing models.
Plus, you don’t always get what you pay for with
some tools.

However, there are some benefits that are possible
with commercial tools, such as readily accessible
support and staying current with new hardware
and operating systems.

With commercial software, there is a persistent
risk known as the “vendor risk.” You never know
when a vendor will go out of business, sell the tool

to another vendor, drop support for a tool, or take
other unexpected and uncontrollable actions. If
commercial tools are the preferred choice, research
the quality and satisfaction with the vendor.
Automation is a long term investment and creating
a dependency on a tool that may not exist next
year is not a good decision.

Open source tools
With the rise of open source software licensing,
test automation tools started to become more
diverse and accessible due to the zero-dollar initial
price. This was significant, as a typical commercial
test automation tool can cost around $5,000 USD
per seat license, annually.

Many people who have acquired and implemented
open source tools have learned that the “free” price
has a much higher cost in implementation and
maintenance. There is also a “vendor risk” with
open source. You never know when an open source
tool project will go dormant, die completely, or be
acquired by a commercial vendor and put under a
new licensing model.

Test Automation - Tools & Solutions Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

Another concern about open source is the potential
for security vulnerabilities. While test automation
tools typically do not carry the same level of
risk as applications that allow external access,
security releases and patches are frequent, as with
commercial software. Some organizations will
not allow the use of open source tools due to the
perceived risk.

Homegrown tools
Some organizations like to own and control much
of what they do. This is often seen in software
companies that have the technical talent to build
internal tools.

For other organizations, the decision to build in-
house tools is based on whether or not they want
to commit to the entire software development
life cycle. For most organizations, it makes more
financial sense to license or buy a tool as long-
term maintenance costs can exceed the initial
development cost of the tool.

However, there are exceptional cases where no
other tool options are available and tools must
be developed in-house. In this case, budget and
time must be allocated for the development and
support of the tool, for the life of the tool.

An option for homegrown tooling is to build a
custom framework based on open source tools and
use programming languages to implement test
scripts. An example would be to build a framework
in an IDE such as Eclipse or IntelliJ, use Java as the
scripting language, and use Selenium WebDriver
along with tools such as TestNG or Junit.

There is also the possibility of automating some
tests using only code written in Python and
executed at the command line level or by a script
that executes at pre-determined times. Any time
combinations of tools are used, the complexity of
the test environment is increased.

Test Automation - Tools & Solutions Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

Frameworks
There are different ways to define test automation
frameworks. In this syllabus, we take the technical
view that sees a framework as a way to house,
control, execute, and maintain all test automation
assets.

DESIGNING/BUILDING FOR
MAINTENANCE (SUSTAINABILITY)

A primary goal in designing and building a
framework is to facilitate sustainability and ease of
maintainability.

This requires planning and thought toward future
changes and growth. Making decisions about
the framework that can have significant negative
impacts in the future is easy. Examples include
deciding on a particular locator approach. When
designing a framework, one locator approach
might appear to be the best, but in future projects,
developers might not use the same kind of locator

in their applications. Ideally a framework is
designed to support multiple projects and to be
extensible as needed. Long-term usage should be
assumed.

BUILDING GOOD REPORTING AND
ANALYTICS CAPTURE

A key aspect of a test automation framework is
reporting test results in ways that are highly visible
to everyone who needs the information and with
minimal manual intervention. A best practice is to
have a dashboard that is automatically updated.
A test automation dashboard should show not
only pass/fail results but also run times and test
coverage.

Test Automation - Tools & Solutions Micro-Credential Syllabus 26Copyright AT*SQA,
All Rights Reserved

RE-USABILITY AND MODULARITY

A good way to enhance maintainability in test
automation is to reduce or eliminate redundancy in
test scripting. This can be achieved by defining test
scripts as functions that can be invoked each time
they are needed in other scripts. This practice is
described in further detail in the “Test Automation
Implementation” micro-credential.

Common naming of scripts and modules, good
commenting, and other coding practices will help
to increase the maintainability of the framework.
Defining these practices prior to commencing
building the framework will help to set the
guidelines.

Test Automation - Tools & Solutions Micro-Credential Syllabus 27Copyright AT*SQA,
All Rights Reserved

Techniques
In order to be effective, test automation tools
require some type of framework. Simply recording
or scripting a test may achieve a short-term goal,
but for building sustainable test automation that
is efficient, scalable, and maintainable, a good
framework is needed.

A test automation framework is a set of tools,
guidelines, and best practices that help automate
the software testing process. It provides a
structured approach to writing, executing, and
managing tests, and aims to make the testing
process more efficient.

The characteristics of good test automation
frameworks include the following:

•	 Defines how tests are organized

The framework defines how tests are structured,
where they’re stored, and how they interact with
the system being tested.

•	 Automates repetitive tasks

The framework can automate repetitive aspects of
software testing, such as menu behavior and login/
signup/checkout flows. These repetitive tasks are
captured in reusable code modules that can be
shared across many test scripts.

•	 Catches and fixes problems early

The framework can help catch and fix problems
earlier in the development workflow by allowing
developers to create early test automation.

•	 Ensures consistency and maintainability

The framework provides a structured way to
organize and execute test scripts, ensuring
consistency, maintainability, and efficiency.

Test Automation - Tools & Solutions Micro-Credential Syllabus 28Copyright AT*SQA,
All Rights Reserved

Common framework approaches include the
following:

Data-driven
Data-driven test automation can reduce the
number of test scripts and, therefore, the level of
maintenance. The concept is to keep the test data
in an external source such as an Excel file or CSV
file. The data files contain input data values and
expected results.

Each time a new instance of data is needed, the
test script reads the external file to obtain the
test data. The “Test Automation How To” micro-
credential describes this practice in further detail.

Keyword / Activity-driven
Keyword-driven test automation is based on the
concept that certain functions can be identified
in a single word (keyword) and invoked each
time that keyword is encountered in a test script.
The “Test Automation How To” micro-credential
describes this practice in further detail.

CREATING BUILDING BLOCKS

Keyword-driven testing is often combined
with modular scripting because of the natural
connection. For example, a keyword might be
“login”. The associated script would also be named
“login.” The “login” script could then read data from
an external test data file to get the credentials
for the test user. In this example, keyword-driven
testing also applies modular test script design and
data-driven testing.

ALLOWING ASSEMBLY BY NON-
PROGRAMMERS

One of the challenges in test automation is getting
manual testers involved. Some testers simply do
not want to be automatons, and others may lack
the essential skills and attributes needed for test
automation.

The keyword-driven framework allows test
designers to contribute test cases, test data, and
other input without needing to know anything
about test scripting. This is done through a GUI or
direct access to the keyword and/or data files.

Test Automation - Tools & Solutions Micro-Credential Syllabus 29Copyright AT*SQA,
All Rights Reserved

BDD and Test Automation
Behavior-driven development (BDD) is a way to
apply “test-first” principles at a functional level.
The BDD construct is:

	 Given that (a condition exists)
	 When (something occurs)
	 Then (something should result)

The BDD construct is more outcome-based than
a user story. The Gherkin language is designed to
implement BDD, but programming is required for
the implementation.

AI-Generated
Artificial Intelligence (AI) is becoming an
increasingly popular feature in test tools. AI
can augment tests that are already automated.
However, anytime AI is used to create test
collateral, it must be reviewed for correctness. AI
may not be able to derive the expected results,
so augmentation is often required to create the
acceptance criteria for a script.

AI-Driven
AI is also used in test automation to make
decisions during test execution and to repair
broken tests (“self-healing”). This application
of AI can anticipate problems that might occur
during test execution and avoid failures that could
cause a test script or entire sets of tests to end
abnormally. For example, if an object has been
renamed, AI may be able to detect the change and
update the script accordingly to use the new name.
While this can save significant time, particularly
with a changing UI, human intervention is advised
to ensure AI has made the correct decisions.

Test Automation - Tools & Solutions Micro-Credential Syllabus 30Copyright AT*SQA,
All Rights Reserved

Examples - Tools and Targets
The tool landscape is constantly changing as new
tools come to market, existing tools are updated,
and sometimes existing tools either change
ownership or disappear altogether.

This syllabus is not intended to endorse or diminish
any particular tool. The examples shown here
represent commonly used test automation tools
and are not exhaustive.

Low code/No code Tools
Tool Supported

Platforms
Vendor Strengths

Selenium IDE Web only
Chrome, Firefox,
Edge

Open Source Free
Record/
playback

Katalon
Recorder

Web only
Chrome, Firefox,
Edge

Katalon (Based
on Selenium
IDE)

Free
Record/
playback

Katalon Suite Web, Mobile,
API, Desktop

Katalon Data-driven
testing
Mobile testing

Test Complete Web, Desktop Smart Bear Drag and drop,
Data-driven,
keyword-driven

Tosca Web, Mobile,
Enterprise

Tricentis Cloud-based, AI

Ranorex Desktop, Web,
Mobile

Ranorex Reputation, Test
Design

UFT Desktop,
Web, Mobile,
Mainframe

OpenText Many people
with UFT
Expereince

Test Automation - Tools & Solutions Micro-Credential Syllabus 31Copyright AT*SQA,
All Rights Reserved

Robotic Process Automation
(RPA) Tools
Tool Platforms

Supported
Vendor Strengths

UI Path Desktop, Web UI Path Designed for
RPA

Code-First Tools
Tool Platforms

Supported
Vendor Strengths

Selenium
WebDriver

Web only
Languages -
Java, Python, C#

Open Source Web Testing

Cypress Web only Open Source Web Testing
Totally
encapsulated
– no plugins
or external
components
needed

Playwright Desktop,
Web, Mobile
(emulators)

Open Source Ease and
variety of
language
understanding

XUnit Family Desktop,
Web, Mobile
(emulators)

Open Source Used mainly
during
component
testing

OpenTest Web, Mobile,
API

Open Source Uses YAML
as primary
scripting
language with
JavaScript as a
second option.

Test Automation - Tools & Solutions Micro-Credential Syllabus 32Copyright AT*SQA,
All Rights Reserved

Languages
Python – Very popular language (#1 in the world),
especially among testers. It is an interpreted
language with no compiler needed for execution.
Developed in the late 80s.

Java - A general-purpose object-oriented
programming language intended to let
programmers write once, run anywhere (WORA),
meaning that compiled Java code can run on all
platforms that support Java without the need
to recompile. Java applications are typically
compiled to bytecode that can run on any Java
virtual machine (JVM) regardless of the underlying
computer architecture. Java is the #3 most popular
language behind C++ (#2).

JavaScript - Often abbreviated as JS, is a
programming language and core technology of the
Web, alongside HTML and CSS. 99% of websites
use JavaScript on the client side for webpage
behavior.

C# - intended to be suitable for writing
applications for both hosted and embedded
systems, ranging from the very large that use

sophisticated operating systems, down to the very
small having dedicated functions.

Ruby - an interpreted, high-level, general-
purpose programming language. It was designed
with an emphasis on programming productivity
and simplicity. In Ruby, everything is an object,
including primitive data types. It was developed in
the mid-1990s by Yukihiro “Matz” Matsumoto in
Japan.

API Testing
Tool Platforms

Supported
Vendor Strengths

Postman Windows, Mac Postman Nice UI

SoapUI Windows, Mac Smart Bear,
with Free open
source version
available

Handles SOAP
and REST,
Performance
and Security
test features

SwaggerHub Windows, Mac SmartBear Tests API
functionality
and
performance

OpenTest Windows, Mac OpenSource Handles Web,
Mobile and API
testing

Test Automation - Tools & Solutions Micro-Credential Syllabus 33Copyright AT*SQA,
All Rights Reserved

Mobile Testing
Tool Platforms

Supported
Vendor Strengths

Appium Windows, Mac OpenSource Widely used

Katalon Studio Windows, Mac Katalon Ease of use

OpenTest Windows, Mac OpenSource Handles Web,
Mobile and API
testing

Frameworks
Some tools claim to include frameworks, but since
there are so many ways to define frameworks,
specific tools are not mentioned. It is best to
refer to the previous section on frameworks to
determine your own needs and solutions.

ROBOT FRAMEWORK

“Robot Framework is an open source automation
framework for test automation and robotic process
automation (RPA). It is supported by the Robot
Framework Foundation and is widely used in the
industry.

Robot Framework’s human-friendly and versatile
syntax uses keywords and supports extending
through libraries in Python, Java, and other
languages. It integrates with other tools for
comprehensive automation without licensing fees,
bolstered by a rich community with hundreds of
3rd party libraries.”

Test Automation - Tools & Solutions Micro-Credential Syllabus 34Copyright AT*SQA,
All Rights Reserved

TESTNG

“TestNG is a testing framework inspired from
JUnit and NUnit but introducing some new
functionalities that make it more powerful and
easier to use, such as:

•	 Annotations
•	 Run your tests in arbitrarily big thread pools

with various policies available (all methods in
their own thread, one thread per test class, etc.)

•	 Test that your code is multithread safe
•	 Flexible test configuration
•	 Support for data-driven testing (with @

DataProvider)
•	 Support for parameters
•	 Powerful execution model (no more TestSuite)
•	 Supported by a variety of tools and plug-ins

(Eclipse, IDEA, Maven, etc.)
•	 Embeds BeanShell for further flexibility
•	 Default JDK functions for runtime and logging

(no dependencies)
•	 Dependent methods for application server

testing

TestNG is designed to cover all categories of tests:
unit, functional, end-to-end, integration, etc.”

JUNIT5

JUnit 5 is the current generation of the JUnit testing
framework, which provides a modern foundation
for developer-side testing on the Java Virtual
Machine (JVM). This includes focusing on Java 8
and above, as well as enabling many different
styles of testing.

Unlike previous versions of JUnit, JUnit 5 is
composed of several different modules from three
different sub-projects.

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit
Vintage

The JUnit Platform serves as a foundation for
launching testing frameworks on the JVM. It also
defines the TestEngine API for developing a testing
framework that runs on the platform.

Furthermore, the platform provides a Console
Launcher to launch the platform from the
command line and the JUnit Platform Suite Engine
for running a custom test suite using one or more
test engines on the platform.

Test Automation - Tools & Solutions Micro-Credential Syllabus 35Copyright AT*SQA,
All Rights Reserved

First-class support for the JUnit Platform also
exists in popular IDEs (IntelliJ IDEA, Eclipse,
NetBeans, and Visual Studio Code) and build tools
(see Gradle, Maven, and Ant).

JUnit Jupiter combines the programming and
extension models for writing tests and extensions
in JUnit 5. The Jupiter subproject provides a
TestEngine for running Jupiter-based tests on the
platform.

JUnit Vintage provides a TestEngine for running
JUnit 3 and JUnit 4 based tests on the platform.
It requires JUnit 4.12 or later to be present on the
class path or module path.

Test Automation - Tools & Solutions Micro-Credential Syllabus 36Copyright AT*SQA,
All Rights Reserved

Conclusion
In this micro-credential syllabus we have covered the high points of the many test automation options
available ranging from open source to commercial. We have examined the pros and cons of the test
automation tools, along with the risks and benefits.

Test automation is a project that requires definition of needs (requirements), design, coding, testing and
maintenance. In fact, maintenance comprises the largest effort and expense of most test automation efforts.

The test tool landscape is constantly changing. You are encouraged the verify the tool information presented
in this syllabus for any changes.

Even with the risks and challenges, many organizations have been successful in implementing and
growing their test automation efforts to be an integral part of their overall testing efforts. By following
the information in this syllabus and the other related micro-credentials, you too can be successful in test
automation.

Sources:
- https://robotframework.org/
- https://testng.org/

Test Automation - Tools & Solutions Micro-Credential Syllabus 37Copyright AT*SQA,
All Rights Reserved

www.atsqa.org

