
Test Automation: Transitions
Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Automation - Transitions Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Automation - Transitions
3 Overview
5 Understanding the Differences Between
 Manual and Automated Testing
8 Becoming More Technical
10 Gaining Tool Knowledge
11 Gaining Coding Skills
14 Gaining Knowledge of Platforms and Environments
15 Testing APIs
16 Understanding Database Functionality
17 Working with Frameworks
19 Building Reporting Skills
20 Gaining SDLC Understanding
21 Understanding Which Features are
 Good Candidates for Test Automation
22 Understanding Other Things Test Automation Can Do

Test Automation - Transitions Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

Introduction

The purpose of this micro-credential is to describe the steps needed to
make the transition from a manual tester to one who understands and

can effectively develop test automation.

Test Automation - Transitions Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST AUTOMATION: TRANSITIONS
Introduction

Understanding the Differences Between Manual and Automated Testing
(K2) Summarize the differences between manual and automated testing

Becoming More Technical
(K2) Explain the skills required for a test automation engineer and how those compare to the skills
for a manual tester

Gaining Tool Knowledge
(K2) Explain the recommended approach for selecting a test automation tool for learning

Gaining Coding Skills
(K2) Summarize the capabilities and features of the various languages used in test automation

Gaining Knowledge of Platforms and Environments
(K2) Explain how environments and platforms influence tool selection

Testing APIs
(K2) Explain how service virtualization can be used in API testing

Working with Frameworks
(K2) Summarize the capabilities of testing frameworks

Building Reporting Skills
(K2) Explain the types of reporting commonly used for test automation

Understanding Which Features are Good Candidates for Test Automation
(K2) Summarize the characteristics of good candidates for test automation

Understanding Other Things Test Automation Can Do
(K2) Summarize the steps recommended for building test automation knowledge

Test Automation - Transitions Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Understanding the Differences Between Manual
and Automated Testing
There are key differences between manual and
automated testing. To get started, you must
understand the differences to know why certain
approaches are needed.

Manual testing is more forgiving, which means
that if the test fails, you can explore why and try
again. In contrast, sometimes, just a very small
change can cause an entire automated test run to
fail. In manual testing, you get a chance to simply
try the test again.

In manual testing, you can modify the test data
and/or conditions “on the fly,” which means you
can try different variations of the test and make
a judgment on whether or not the test passed or
failed. If needed, you can re-run the test and verify

results with subject matter experts (SMEs) to get
their opinion of the test results and whether your
manual test needs to be modified.

With an automated test, evaluation starts when
the failure has occurred. From that point, the
analysis needs to be conducted to determine the
cause of the failure.

A common misconception about automated
testing is that it can replace manual testers. While
test automation can ease the burden of repetitive
testing, there will always be a role for manual
testing because the tools do not understand all
the nuances in an application. In fact, before a
test can be automated, it must first be understood
and tested manually. For this reason, all test
automation engineers must do some amount of
manual testing.

Test Automation - Transitions Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Manual testing is quick, can be “fire and forget”
which means a manual test can be performed
quickly and the outcomes seen immediately.
Ideally, such a test would be planned, analyzed,
designed, and implemented in a test management
tool. As compared to an automated test, a manual
test can be created faster. It might take longer,
however, to execute than an automated test that
has already been created.

Automated tests do exactly what you program
them to do. There is no room for judgements to
occur. Just as in the software you are testing,
an automated test runs as programmed and
determines pass/fail based on pre-defined
parameters.

When a test fails, you start troubleshooting. In
manual testing, a failure can be quickly assessed.
Depending on the assessment, a defect report
may be written or the test may be adjusted (or
the environment or data) and the test is executed
again. Failures can occur because a test was
executed incorrectly. With manual testing, that’s
easily corrected with a re-execution. With test
automation, failures can also be due to failures in
the way the test has been coded, which may cause
the test to fail erroneously.

A failure with an automated test may cause the
entire test run to fail. In manual testing, you can
often work around a failed test and complete other
tests that pass. This is not always true in test
automation. One failure might cause an entire test
run to stop.

Test automation is always particularly prone to
failure when changes occur. For example, an
object locator may have changed, or a navigation
may be altered with an extra mouse click required.
This doesn’t affect manual testing but is likely to
cause an automated test to fail. The object under
test may actually be correct, just changed.

Automated testing takes time and technical
skills. Test automation is more than just translating
a manual test script into code. Some manual tests
may be very difficult to code due to the setup
needed or the validation required. Some manual
tests focus only on the positive path. These
“passing tests” (confirmatory) verify that the
software works per the requirements, but don’t
test for how it handles error conditions, invalid
data, etc. These types of tests are more suitable
as smoke tests than for a rigorous test of the
application.

Test Automation - Transitions Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Budgets must be justified. Even when using
open-source tools, test automation can be costly.
There must be money allocated for building and
maintaining the automation, plus training of
the people creating and maintaining it. In the
short-term, manual testing is almost always less
expensive. It’s in the multiple executions and relief
of tiresome, repetitive work that the value of test
automation is realized.

Training is needed. While this is also true of
manual testing, test automation has unique
training requirements due to the constant march/
influx of tools and features in the tools that
must be monitored and understood. Training is
essential to keep up with the changes, as well as
the functionality in tool(s) you are using. Trying to
create test automation without the proper training
is a recipe for failure.

Sophisticated design is needed to reduce
maintenance costs. If tests are simply created
with no thought given to sustainability with
frameworks, then you will eventually need to
deal with a maintenance nightmare. Careful
framework design, as discussed in Part 2 of this
micro-credential, is essential and designing a good
framework requires training and experience.

Updates are needed. As the software under test
grows and gets more features, the automation
can become stale, and the scope of coverage is
reduced. Growing the test automation is much
more than just keeping up with maintenance
changes. It is easy for the test automation to suffer
from growing weaker over time, with all tests
passing but no meaningful testing as a result. This
happens when the focus of the testing is on the
parts of the code that are the most mature and
most stable.

Test Automation - Transitions Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Becoming More Technical
All of this means that testers who want to become
test automation engineers must become more
technical in nature. The skills needed include:

Analytical skills, which are all about studying
the items to be tested and identifying what
should and should not be tested. In addition, this
includes understanding which features should and
should not be automated. Technically anything
can be automated, but not everything is feasible
to automate due to complexity, high level of
change, low expected yield, etc. Determining the
best use of the limited budget for automation is
critically important for the long-term success of an
automation program.

In test automation, especially at the outset,
prioritization of tests to be automated and
executed is needed. This ensures that the
automation effort is put into the highest reward
areas. Prioritization is based on risk and other
criteria, such as expected areas that are likely to
change and will need more testing, the need for

refactoring of automated tests, risky areas that
are hard to test manually, and the feedback from
retrospectives regarding ways to improve the test
automation. Other criteria for test prioritization
include usage criteria, such as which areas of the
application are used the most by users, and defect
trends, both past and present.

Estimation skills in test automation are very
important. This includes estimating:

• development of test automation assets (e.g.,
framework, test scripts, reporting)

• maintaining test automation assets and
environments

• the time needed to execute tests
• the cost of tools and environments
• the time needed for documentation of test

automation along with the basis of estimation

Test Automation - Transitions Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

Critical thinking to design tests that are more than
just confirmatory, based on:

• Boundary Value Analysis
• Decision Tables
• State Transitions

Critical thinking is also needed for understanding
the balance between confirmatory tests,
exploratory tests, and rigorous tests. It is also
important to be able to assess where automation
fits in the software development lifecycle. This
includes understanding how test automation is
applied in unit testing, system testing, system
integration testing, and acceptance testing. In a
DevOps environment, this includes determining
how continuous testing will be implemented into
the pipeline.

Problem-Solving Skills to deal with the never-
ending challenges presented by test automation
that fails for obscure reasons. In many ways, test
automation is one big problem-solving activity!
Troubleshooting can be complex and often requires
a good understanding of the software under test
as well as the test automation.

Test Automation - Transitions Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

Gaining Tool Knowledge
The tool landscape is always evolving for
test automation. A test automation engineer
should know about the major tools used in test
automation in order to select the best tool for the
work at hand.

Popular tools include:

• Selenium (both IDE and WebDriver)
• Playwright
• Cypress
• Katalon
• Test Complete
• Tosca
• Ranorex
• Postman

Some of these are open source while others are
licensed and may require a considerable outlay for
the purchase of the necessary licenses.

Most manual testers who want to learn
automation need to start by learning one of the
tools. When choosing a tool to learn first, consider:

• Tools in use in your organization
• Tools available for you to obtain on your own

with minimal expense (Selenium IDE and
WebDriver), Playwright, Katalon, Cypress, etc.

• Tools that are easily learned (Selenium IDE,
Katalon, Playwright, Postman)

• Tools for which skills are sought in the
marketplace

Even some of the more expensive tools may have
free online learning available. It pays to be realistic
though. There’s no reason to spend time learning
to use a tool that your organization will never be
willing to buy due to cost.

Test Automation - Transitions Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Gaining Coding Skills
While there are no-code and low-code tools, they
have limited capabilities for most automation
efforts. It is a realistic expectation that
programming skills will be required. At the outset,
you may only be able to learn one language.
However, learning to code in one language can
help prepare you for others.

Popular languages for test automation include:

• Java for Selenium WebDriver and Junit
• C# for Selenium WebDriver
• Python for coding tests independent of a tool
• Ruby for coding tests independent of a tool
• JavaScript for Playwright and Cypress

Where to Start with Coding
Languages
There are many programming languages, and the
starting point depends on your own needs and
whether a particular tool is already in use within
your organization. If you are learning on your own
with no existing tool set, perhaps the best place
to start in language learning is JavaScript, as it is
also used in one of the more popular and freely
available test tools, Playwright.

However, Python is the most popular coding
language for testers and comes in handy when
coding utilities and tests outside of a particular
tool set. If you are new to test automation, Python
is a great place to start. It is easy to learn, has a
large online community, and is versatile enough
for various testing needs. Once you have a good
understanding of the basics, you can then explore
other languages based on your specific needs.

Test Automation - Transitions Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Factors to consider when choosing a language:

• Your experience level: Python is generally
considered the easiest to learn, while Java and
C# have steeper learning curves.

• The type of testing you will be doing: JavaScript
is best for front-end web testing, while other
languages are more versatile.

• The tools and frameworks you will be using:
Make sure the language you choose integrates
well with the tools you need.

• The needs of your team or organization: If your
team already uses a specific language, it might
be best to start there.

If your team is using Selenium WebDriver, you
will probably want to learn Java or C#, whichever
is in use, realizing that other languages, such as
Python and Ruby, can also be used with Selenium
WebDriver. The language you choose to learn
first depends a lot on which one is currently in use
within your organization. It’s much easier to learn
a programming language when you can see it in
real use rather than just in training models.

Keep in mind that the above list of languages can
change, so new training is needed to keep up with
those changes.

Building Logical Thinking
Skills
When dealing with code, the ability to think
in logical and repeatable patterns is a must-
have attribute and skill. Since test automation is
“software testing software,” you must learn how to
think in terms of code constructs that are efficient.

Working with flowcharts and control flow graphs
are two ways to gain this skill.

For some, this is a very challenging skill to obtain.
Keep in mind that test automation is not for
everyone, but as mentioned earlier, there are tools
that are “low code” and “no code” that allow usage
without heavy coding skills. Also, frameworks
such as data-driven and keyword-driven allow
testers without coding skills to interact with the
framework by providing test data based on test

Test Automation - Transitions Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

conditions. API testing is another example of test
automation that can be achieved with minimal
coding. These can often be the intermediate
step between pure manual testing and pure test
automation development.

Finally, remember that while technical skills come
in handy for testers, career advancement in testing
does not require technical skills. In actuality,
human skills are often needed more than technical
skills. Excellent analysis skills are the basis for all
test development.

Test Automation - Transitions Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Gaining Knowledge of Platforms & Environments
Platforms and environments comprise the
foundation of everything else: tools, architecture,
data and so forth. The most common operating
systems include Mac OS, Windows, and Linux.
These comprise the context within which you
will be working. These are typically decided
by an organization based on their needs and
preferences. It is important to remember that not
all tools will work on all platforms.

Within the environment are browsers and devices
to be tested. The variations and combinations
are practically endless, so decisions must be
made based on those browsers and devices most
commonly used by the user audience. Decisions
around these items can have major implications

for testing. For example, consider the requirements
for testing iOS and Android devices. Each have
particular platform requirements. iOS, in particular
requires the Mac OS to test using XCode.

Another key decision point, particularly in mobile
application testing, is whether testing will be
done on premise or in the cloud. The cloud offers
the ability to test various devices and browsers
without the need for specific platforms and
environments. Kobiton is an example of one such
cloud-based test automation service that can test
real devices in the cloud.

Test Automation - Transitions Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

Testing APIs
API testing is a great place to start learning test
automation due to tool ease of use and simplicity
of testing. APIs have a limited number of activities
they can perform, which limits the amount of
testing required. The API testing is also very
focused and often can ignore the processing before
and after the use of the API. One of the most
popular tools for API testing, Postman, is available
for free to individual users. API testing allows you
to learn the basics of test automation without
interfacing with a user interface. It also allows you
to learn how to interact with mock objects.

API testing and service virtualization are two
closely related concepts that are required for
ensuring the quality and reliability of modern

software applications. Service virtualization
is a technique that simulates the behavior of
dependent systems or services that are not yet
available or are difficult to access during testing.
This is a similar technique to using mock objects.
This allows testers to perform comprehensive
testing of the application under test without
being blocked by external dependencies such as
interfacing modules that are not yet ready for
testing. Service virtualization creates a virtual
version of the dependent system, service, or object,
mimicking its behavior and responses. This allows
testers to test various scenarios, including error
conditions and performance bottlenecks, early in
the testing cycle.

For a more in-depth discussion, see the AT*SQA
micro-credential course on API Testing.

Test Automation - Transitions Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Understanding Database Functionality
Part of the test automation journey involves
learning databases and how they work. A test
automation engineer should have well-developed
SQL skills. For example, when creating test data,
an SQL query might be used to get an initial set
of data from a database table. Care must be
exercised when working with databases so as not
to accidentally destroy or corrupt data, which is
one of the risks of using production data in testing.

Test Automation - Transitions Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Working with Frameworks
Getting into test automation will likely not require
that you be able to build a framework, but rather,
be able to work within the framework you have
been given. Test automation design frameworks
were covered in Part 2 of the test automation
micro-credential, as data-driven and keyword-
driven frameworks were described. Part 3 of the
test automation micro-credential discussed two
other frameworks: JUnit and TestNG. It’s worth
revisiting those briefly.

JUnit and TestNG are two popular testing
frameworks in the Java environment, which makes
them limited to that environment. They can be
used with tools such as Selenium WebDriver as
a way to manage test execution and convey test
results.

JUnit has a longer history and is the more
commonly used of the two frameworks. It is
relatively simple and easy to use and is commonly
incorporated into DevOps pipelines to provide
continuous and early testing. JUnit is commonly
used by developers as a framework to support the
development and execution of their unit tests.

There are test automation experts with strong
opinions and preferences toward either JUnit or
TestNG, depending on the needs at hand. As a
tester making the transition to test automation,
you will likely not have to decide between JUnit
and TestNG. That is an architectural decision and
is often made in concert between the architecture
team, the developers and the test automation
engineers.

Test Automation - Transitions Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

Working With an IDE
If you will be working with tools that are code-
intensive, you will need to learn how to work with
an Integrated Development Environment (IDE). An
IDE provides the ability, among other things, to:

• Edit code
• Organize projects
• Debug code
• Interact with the console

Some common IDEs are:

• IntelliJ Idea
• Visual Studio
• Eclipse
• XCode
• Android Studio

Test Automation - Transitions Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Building Reporting Skills
In test automation, as in all of testing, reporting is
vitally important to accurately understanding test
results. Dashboards are a great way to visualize
the results of a test automation run. Many tools
have built-in dashboards, which are convenient
and reduce the implementation effort. Setup
and configuration is usually required, but is also
relatively straightforward.

Some tools, particularly some open-source tools,
require a separate dashboard to be implemented.
Commonly used dashboards include:

• Allure
• ReportPortal
• RobotFramework
• Tesults
• TestReport.io

Nearly all test management tools offer dashboard
functionality to report automated test runs as well
as manual test results. These tools include:

• QTest (by Tricentis)
• Jira (Xray, Zephyr Scale)
• PractiTest
• Azure DevOps

Some people have found that building their own
dashboards in a spreadsheet can help fill gaps
where commercial and open-source dashboards
may be lacking. However, such homegrown
dashboards can come with development and
maintenance costs.

Test Automation - Transitions Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

Gaining SDLC Understanding
As in all of testing, understanding the Software
Development Lifecycle (SDLC) you are working in
is vital to know when to:

• Plan test automation efforts
• Design test automation frameworks
• Prioritize which features will be automated first
• Determine the level of test automation
• Implement test automation
• Grow test automation
• Maintain test automation

As with other items discussed, if your organization
is already using test automation, your priority is to
understand the SDLC and know which activities
have already been performed, which activities
you are expected to perform, and when you are
expected to perform them.

Examples of SDLCs are sequential (waterfall,
v-model), iterative, and incremental (Agile and
DevOps).

Test Automation - Transitions Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Understanding Which Features are Good
Candidates for Test Automation
As a test analyst transitioning to test automation
engineer, it is important to know which parts
of an application are good candidates for test
automation. Some helpful criteria to consider
include:

• Features that are very predictable in their
behavior

• Features that are stable and unlikely to change
substantially

• Features that are high risk to the business and
frequently used

• Features that must be included in regression
testing

Part of this understanding comes from learning
how to work with others (e.g., test analysts,
developers, and users) to better understand the
nature of items to automate. This requires a
proactive effort on the part of the test automation
engineer to communicate with others. There is
normally an expectation that test automation
engineers can communicate on a more technical
level than test analysts. For example, this is
needed when implementing automation into the
DevOps pipeline or developing scripts to generate
and manage test data.

Test Automation - Transitions Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Understanding Other Things
Test Automation Can Do
Test automation has many uses beyond testing.
Automation can be applied to test-related
activities such as building and managing test data,
resetting and creating test environments, and even
applied to business functions, such as data entry.
These are all value-added activities that can help
justify the cost of test automation by reducing
manual work and improving accuracy and speed.

Getting Started in Test
Automation
The following are helpful in getting started in test
automation.

1. Get training in the concepts, tool(s), and
methods needed

There are options such as:

• Certifications (ISTQB, AT*SQA)
• Self-study
• Vendor courses (some are free, such as

Cypress)
• Independent courses (range from free to paid),

such as Udemy

Test Automation - Transitions Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

2. Understand the concepts of test automation

These concepts were covered in Part 1 of this test
automation micro-credential and form an essential
foundation of why we do what we do. Without this
understanding of basic test automation concepts,
it is risky to start performing test automation
activities without understanding their purpose and
why they are needed. These concepts include:

Start slow and grow over time, as simple tests
can provide significant leverage and show early
benefits. Building your test suite slowly and
measuring rates of change allows early successes
and a proof of concept.

Strive for sustainability. Automate tests that are
less likely to change and limit the number of tests
to a manageable and maintainable level. Use
techniques already discussed, such as modular
scripting, data-driven testing, and keyword-driven
testing, to help reduce the maintenance burden.

The use of “no-code” and “low-code” tools, as
opposed to “code-first” tools, may also provide
leverage in maintenance, especially those that
offer self-healing functionality when a script fails.
As AI becomes embedded within the tools, the
self-healing and analysis capabilities of the tools
improves significantly.

3. Start with low-code/no-code tools

This allows you to create test automation without
the initial need to code. You can see quick results.
One of the best ways to dive into test automation
is to do it! While this may not be the best way to
implement a large test automation project, it is a
great way to create some small scripts and learn
the basics.

4. Learn to program

Any language will do to start! See the discussion
above for some practical tips.

Test Automation - Transitions Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

5. Find a mentor to help

Having a real-life person to review your work and
provide feedback is invaluable.

6. Move to code-first tools to gain deeper
knowledge

An alternative is to code some utility programs,
such as for test data maintenance.

7. Build a portfolio of work to demonstrate skills

This is a great help when trying to advance your
career either within your existing organization or
when looking for a new job.

8. Continue to grow

This means staying current with tool and
technology trends. For example, Selenium is
always changing. New tools are constantly being
released into the marketplace, and other tools may
decline in use. You will always be more hirable if
you are familiar with the current and most popular
tools. A good place to watch for tool trends is to
check the Gartner Group annual reports.

Test Automation - Transitions Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

www.atsqa.org

