
Test Techniques Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Techniques Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Techniques
5 Introduction
7 Partitions and Boundaries
11 Decision Tables
13 Combinatorial
15 Exploratory Testing
17 API Testing
19 Picking the Best Technique

References
20 ISO/IEC/IEEE Standards
20 Trademarks
20 Books
21 Other References

Test Techniques Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information
STUDY TIME – 215 MINS.

KEYWORDS

Application Programming Interface (API), boundary value
analysis (BVA), classification trees, combinatorial testing,

decision table, equivalence partitioning (EP), exploratory testing,
orthogonal arrays, pairwise testing, session-based testing, test

charters, tester

Test Techniques Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST TECHNIQUES
Introduction

Partitions and Boundaries
(K3) For a given set of requirements, create a series of test cases using a combination of
 equivalence partitioning and boundary value analysis (BVA) testing techniques
(K1) Recall the types of defects that are likely to be found using equivalence partitioning and BVA

Decision Tables
(K3) For a given set of requirements, apply the decision table testing technique
(K1) Recall the types of defects that are likely to be found using decision table testing

Combinatorial
(K2) Describe combinatorial testing and the tools and techniques that are used
(K1) Recall the types of defects that are likely to be found using combinatorial testing

Exploratory
(K2) Explain the concept and application of exploratory testing
(K1) Recall the types of defects that are likely to be found using exploratory testing

API Testing
(K2) Describe the purpose and application of API testing
(K1) Recall the types of defects that are likely to be found using API testing

Picking the Best Technique
(K1) Recall how to select testing techniques for a given project

Test Techniques Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Introduction

Test techniques are procedures that are used to identify and select test
conditions that can be targeted by tests. Test techniques can be applied at any
stage in the development of software. The earlier testing starts (i.e., the shift
left), the more effective and efficient the testing is. In the world of rapid lifecycles
and continuous integration and deployment, testing is a critical task that must
be executed to ensure that quality is being built into a product. Testing tasks
are often shared by developers and testers, particularly in mixed skill teams
commonly seen in Agile SDLCs. In this document, the term “tester” means
the person designing and executing the tests as an activity, not necessarily
a specific role with a “tester” title. For example, a business user may be the
tester in the UAT activity, but they would not be a full-time tester.

Test Techniques Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

It can be argued that exploratory testing and API testing are actually test types
or even test approaches rather than test techniques. Generally, these two
types are lumped together with the test techniques, so this chapter follows
that same approach.

This section explores six common testing techniques that are applicable across
a wide range of software. For the sake of this chapter, these are grouped
together. Each of these has particular targets for the testing and is suited to
finding particular types of defects. No one technique is suitable or effective in
all situations and each technique has a target coverage. Often, a combination
of techniques is used to provide the most efficient coverage.

Test Techniques Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Partitions and Boundaries

Equivalence Partitioning
Equivalence Partitioning (EP) is used to reduce the
number of specific tests while still assuring broad
coverage. EP is usually focused on determining a
set of input values to use during testing, although
it can also be used to categorize output values,
processing variables or even environments. To
apply EP, the set of possible values is divided into
partitions (or equivalence classes) in which all
values in the partition will be handled the same
way by the software (e.g., positive values will be
processed, negative values will cause errors).

Partitions can be considered “valid” or “invalid”. All
the values in a valid partition should be accepted
or processed by the software with no errors. All
the values in an invalid partition should be handled
as errors. For example, if the valid partition is for
all triangles, then everything that is not a triangle
is in the invalid partition. For input values, if the
valid values are from 1-100, then anything below 1
would be in an invalid partition for values that are
too low; and anything above 100 would be in an
invalid partition for values that are too high.

Once the partitions are established, one value is
selected from each defined partition (valid and
invalid) and how that value is handled is assumed
to be representative of how all the values in that
partition would be handled.

Test Techniques Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Application

This technique is best applied when there are
known sets of values that will receive the same
processing. It is commonly used for input values
where the set (or partition) of values can be
determined. A risk with this technique occurs when
partitions are established with values that actually
receive different processing. It is important to have
good information regarding how the software
works when picking the proper partitions.

Types of defects

Defects found by this technique are usually
functional in nature and deal with incorrect
handling of various sets of data (e.g., no error
handling for negative values).

Coverage

Coverage is determined by dividing the number of
partitions for which a value has been tested by the
total number of partitions identified. For example,
if there are ten sets of values for which processing
is different, and at least one value from each of five
partitions has been tested, then 50% coverage has
been achieved with this technique.

Test Techniques Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

Boundary Value Analysis
Boundary Value Analysis (BVA) is an extension
of EP and concentrates on testing the values
that fall on or near the boundaries of partitions.
BVA requires ordered partitions (i.e., ranges of
numbers), to be able to test the boundaries of the
ranges. Testing can be done with a two-value or
three-value approach. With two-value BVA, the
actual boundary value (in the valid partition) is
tested as well as the value that falls immediately

outside of the partition (in the invalid partition).
With three-value BVA, the value immediately
before the boundary (valid), the value on the
boundary (valid) and the value immediately over
the boundary (invalid) are tested. Two-value is the
more common application of BVA; however, the
three-value method can be very helpful in cases
when a single threshold is crossed, such as a
processing date.

Test Techniques Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

Application

BVA can be applied to any ordered partition to
determine if the values on and over the boundary
are handled properly. Because this is a common
place for errors to be made when programming,
this tends to be a high yield technique that is
relatively easy to apply.

Types of Defects

Defects detected are related to incorrect boundary
handling, such as the value of the boundary
not being included in a valid range of values
or a boundary that is not in the correct place.
Essentially, BVA detects defects due to the
incorrect usage of a relational operator in the code
or a requirement, such as > or =.

Coverage

Coverage with this technique is determined based
on how many boundaries are tested divided by
the number of boundaries there are (determined
by the number of partitions with each partition
having two boundaries). A boundary test consists
of either two values or three values, depending on
the approach selected.

Test Techniques Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Decision Tables
Decision tables are used in requirements
engineering and testing to help define how
business rules should be handled. Decision
tables consist of two halves of a table, with the
top half typically showing the conditions to be
tested (one condition per row) and the bottom
half showing the expected results from a set
of conditions (one result per row). Columns are
used to determine if a condition is to be tested,
usually with a true/false or yes/no value for each

condition. Results are indicated in each column
based on the results expected for that combination
of conditions. Multiple results are possible for a
particular condition combination (e.g., display
an error and return to the previous screen).
Condition combinations and interactions are tested
with decision tables by verifying that different
combinations of conditions result in the proper
outcomes or expected results.

Test Techniques Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Application

Decision tables are well suited for software that
must make decisions based on sets of conditions
in order to return a proper result. Business rules
and any type of non-trivial decision logic are
good targets for this type of testing. Because the
decision table itself presents sets of conditions and
expected outcomes, it is often used as a shortcut
to creating detailed test cases. Decision tables
can serve as an organized checklist to ensure all
significant decision logic is tested without having
to further document concrete test cases.

Decision tables can also be used to derive
additional rules from the software, based on the
knowledge of only one rule. When only one rule
and its conditions and outcomes are known, the
tester can surmise the proper outcomes of other
combinations of the conditions.

Types of Defects

Erroneous decisions and the resulting incorrect
outcome(s) are targeted by this type of testing.
Decision defects may be caused by incorrect
coding or incorrect/unclear requirements. When
used in requirements engineering and analysis,
decision tables will often identify condition
combinations that are not handled or where the
expected outcome is unknown, indicating that
further analysis is needed.

Coverage

Decision table coverage is determined by the
number of columns covered by at least one test
divided by the possible combinations (the columns
of the table).

Test Techniques Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Combinatorial
Combinatorial testing techniques are used to limit
the number of combinations of supposedly non-
interacting (independent) parameters or conditions
that need to be tested. The parameters must be
compatible, meaning that any one parameter
can be paired with any other parameter. Because
some combinations will be eliminated with this
technique, it is important to ensure that the
conditions should not interact. In the case of
testing software across a large set of different
browsers and operating systems, testing every
possible combination would be prohibitive in effort.
Combinatorial testing applies algorithms that are
built into tools that mathematically reduce the
number of combinations to a manageable set
while still preserving a good level of coverage.

This technique is very helpful in reducing the
number of test cases when the potential number
of test condition combinations are too many to
test, either manually or with test automation. It
is important to note that additional test cases

may be needed to cover important condition
combinations not derived from combinatorial
test design. In addition, expected results must
be documented for each test case, as the
combinatorial approach only identifies efficient
combinations of test conditions, not outcomes.

There are a number of tools and approaches used
in combinatorial testing. The most common of
these are:

• Pairwise testing - in this approach all pairs of
combinations are tested together, but not all
possible combinations

• Classifications trees - this approach allows the
user to create a diagram of a “tree” that shows
the variables to be tested and then applies
an algorithm that will cover all singles, pairs,
tuples, etc. of the combination of the variables

• Orthogonal arrays - this approach uses preset
arrays of values to determine the combinations
to be tested

Test Techniques Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Application

Any testing that needs to be conducted with non-
interacting conditions or variables can benefit
from this technique. Such instances could include
environment variables (e.g., operating system,
browser, or device type) or combinations of
internal variables (e.g., car color, car type, or car
price).

Types of Defects

This technique generally identifies defects where
a particular combination that should be handled
is not (e.g., a particular device type is not handled)
or where there is an interaction between the
conditions (e.g., the color of the car influences the
price of the car).

Coverage

Coverage with this technique is determined by
dividing the number of test combinations tested
by the number of combinations generated by the
specific tool or technique.

Test Techniques Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

Exploratory Testing
Exploratory testing is a combination of learning
how the software works (exploring) and testing
that it works as expected. Exploratory testing is
often session-based (sometimes called session-
based testing) and may be guided by test charters
which define the objective for a test session.
Session sheets may be filled in at the conclusion
of the testing to log what has been tested and
to note any unexpected occurrences for further

investigation. Timeboxing is commonly used to set
a time limit for a session. Timeboxing focuses the
testing on the defined objective and controls the
time that is devoted to a particular charter.

Exploratory testing is most effective when
conducted by an experienced tester who is trained
to detect issues that an untrained operator could
easily miss. Those with good domain knowledge
and testing skills are best suited for this type of
testing. In an Agile project, someone with a testing
background paired with a product owner can
help produce the best outcome from these testing
sessions.

Test Techniques Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Application

This technique is well suited to an environment
where quick feedback is needed regarding the
overall quality of an area of the software. This
is sometimes called “smoke testing” or “sanity
testing”. It also works well in environments where
there is only minimal documentation regarding
the expected functionality of the software. In Agile
projects, exploratory testing is often used as a first
validation that the acceptance criteria for a story
have been met. This may be followed by more
methodical testing as time allows. In more formal
testing environments, exploratory testing may be
used to augment other testing techniques in order
to check for gaps in the test coverage and to allow
the tester to bring more creativity to the task.

Types of Defects

Defects found tend to be functional issues where
the requirements have not been implemented
correctly or where user transactions and scenarios

are not supported. Non-functional issues may be
found in the areas of usability and performance,
particularly when the testing is concentrated
on end-to-end transactions. Security issues,
particularly access control, may also become
apparent with this type of testing. Although
performance and security defects may be found
when exploring, it is not a substitute for formal,
planned performance and cybersecurity testing.

Coverage

One of the drawbacks of exploratory testing is
the difficulty in determining coverage. Because an
individual tester may take any number of paths
when testing the software, it is likely that the
coverage will vary widely and that repeatability of
the tests may not be possible unless detailed notes
are recorded in the session sheets. It is possible to
equate a test session to a test case. When this is
done, coverage of sorts can be measured based on
the number of sessions (test cases) completed vs.
not run.

Test Techniques Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

API Testing
API testing is more of an approach to testing than
an actual technique. API testing focuses on the
interfaces between software components rather
than the techniques discussed above that are
applied to testing primarily conducted from the UI.
For example, an application may have an interface
that it uses to communicate to a web service. That
interface is called an API. When testing this API,
the testing would focus on the information passed
between the application and the web service, error
recovery and data handling.

API testing is often conducted with the assistance
of tools that will analyze the expected inputs of
an API and present the user with parameters that
must be assigned values during the testing. Testing
of an API usually focuses on sending values to the
API and verifying that the values returned from
the API meet the expectations. Understanding the
purpose of the API is important for creating valid
test data and to validate the response.

Test Techniques Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

Application

API testing is often conducted when testing via
another interface, such as the User Interface
(UI), would require more effort than is justified
by the result. In many cases, manual testing is
concentrated on the UI, including the look and
feel, while API testing is used to validate that
the services used by the front end will perform
correctly both with valid and invalid data. In cases
where the UI is not yet available, or is unstable,
testing from the API may be the most effective
approach. Test automation is also sometimes
concentrated at the API, where it will not be
subjected to changes in the UI that may break the
automation scripts.

API testing requires either the use of tools or
programming to access the APIs, send data and
receive responses. Automating this testing is an
efficient approach and will allow testing of multiple
services independently without having to drive the
interactions from the UI. Because API testing does
not depend on a stable UI, testing can often start
earlier and automation can be built earlier as well.

Types of Defects

API testing can find a variety of defects, including
functional issues where the right data is processed
incorrectly, or incorrect data is not detected and
reported properly. Error recovery issues, such as
transactions being re-processed when a service
is not available or is not responding in a timely
manner, can also be detected with API testing.
Non-functional issues such as performance can be
detected with API testing. Cybersecurity testing,
including access rights and vulnerability detection,
can also be conducted through the API.

Coverage

API test coverage is dependent on the capabilities
of the API. At a minimum, all input and output
parameters should be checked with a variety of
valid and invalid data.

Test Techniques Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Picking the Best Technique
There is no single perfect technique, which is why
anyone involved in testing should have a good
understanding of the various techniques and be
able to apply them appropriately. Combinations of
techniques are often used to get the best coverage
for the least amount of effort. For example, pairing
decision tables with equivalence partitioning can
help determine the values that need to be entered
to exercise the various decision combinations.

It is important to understand the applicability
and coverage that can be achieved with any of
the techniques. Using techniques in combination
will help to provide the level of testing needed for
any product. When developers use API testing as
part of unit testing, it may make sense to leverage
those tests to build the test automation that will
be part of a continuous integration/continuous
deployment implementation. Similarly, developing

good decision tables and automating the high
priority condition combinations can give a good
level of assurance that the main functionality of an
application is working.

Exploratory testing, in both formal and informal
approaches, is used extensively in the industry.
It provides quick feedback and can be leveraged
to learn about a new software release without
combing through documentation that may or may
not exist. While it is a useful tool in the arsenal,
it does not provide a way to measure coverage
and, therefore, large areas of the code can be
missed. This is particularly so when applied by
less experienced testers or developers who are
concentrating only on certain areas. It is important
to understand the goals of testing and the
necessary level of coverage in order to pick the
most appropriate technique(s).

Test Techniques Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

References
ISO/IEC/IEEE Standards

• ISO/IEC/IEEE 12207:2017
• ISO/IEC/IEEE 15288

Trademarks
The following registered trademarks and service marks are used in this document:

• AT*SQA® is a registered trademark of the Association for Testing and Software Quality Assurance

Books
[Anderson00]: Anderson, L.W. and Krathwohl, D.R. (2000) A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Allyn & Bacon: Boston MA, ISBN-10:
080131903X

[Firtman]: Maximiliano Firtman, “Programming the Mobile Web”, O'Reilly Media;

Second Edition (April 8, 2013), ISBN-10: 1449334970

[PMBOK] Project Management Institute, “A Guide to the Project Management Body of Knowledge (PMBOK
Guide) – Sixth Edition, 2017, ISBN-10: 9781628251845

Test Techniques Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Other References

The following references point to information available on the Internet. Even though these references were
checked at the time of publication of this syllabus, AT*SQA cannot be held responsible if the references are
not available anymore. AT*SQA is not endorsing any of these sites or their products. The references are
provided as a source of information only.

https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-money-just-disappeared/ https://www.reuters.
com/article/us-facebook-settlement/facebook-settles-lawsuit-over-

2012-ipo-for-35-million-idUSKCN1GA2JR

[NASDAQ] https://www.sec.gov/news/press-release/2013-2013-95htm

National Institute of Standards and Technology. Framework for Improving Critical Infrastructure
Cybersecurity. Version 1.1. 2018. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

National Institute of Standards and Technology. Risk Management Framework for Information Systems and
Organizations: A System Life Cycle Approach for Security and Privacy. Revision 2. 2018.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

[WCAG] https://www.w3.org/WAI/policies/

www.atsqa.org

